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Abstract

Prioritized experience replay has been an effective traditional
solution to online deep reinforcement learning challenges, such
as data correlation and non-stationarity. However, standard pri-
oritization often overlooks the nuanced, task-specific behaviors
of states, leading to a ”task-agnostic” sampling problem. This
paper introduces a novel approach by incorporating an on-policy
bisimulation metric into the experience replay prioritization pro-
cess. This metric measures behavioral similarities and diversifies
the training data, aiming to enhance learning by focusing on be-
haviorally relevant transitions. The proposed method balances
between exploitation and exploration, addressing the limitations
of conventional TD-error-based prioritization and enriching the
training process with more informative state transitions.

1. Introduction
Incorporating deep learning techniques into reinforcement

learning (RL) frameworks has been challenging due disparity in
data assumption between deep learning and RL schemes [9]. Tra-
ditional deep learning relies on the independence of data samples
for effective neural network training, whereas RL is characterized
by a temporal sequential process that results in highly correlated
states. Moreover, the data distribution in RL is non-stationary; it
evolves as the algorithm acquires new behaviors. This dynamism
leads to instability in deep learning, which typically assumes a
fixed and identical underlying distribution.

Experience replay has been implemented in online RL algo-
rithms, such as DQN [9], DDPG [8], SAC [6] to address both
data correlation and non-stationary distributions issues. It facili-
tates breaking temporal data correlations, leading to approximate
independent and identically distributed (iid) data distributions.

While experience replay benefits online RL, significant itera-
tions may still be required for convergence. Schaul et al. [10]
note that a DQN algorithm revisits the same experience tuple†

an average of eight times, not all of which lead to significant
improvements. In consequence, they proposed a prioritized ex-
perience replay, assigning probabilities to each experience based
on the temporal difference (TD) error [11]. The TD-error priority
works as an indicator of the expected learning progress; encour-
aging more frequently replay experiences which lead to higher
improvements. Nonetheless, this prioritization can reduce data

*Proposal: This work is an early-stage research proposal without results yet,
but I have provided sufficient theoretical evidence to support it.

†An experience tuple is (state st, action at, reward Rt, next state st+1)

diversity, an issue alleviated through stochastic prioritization.
Prioritizing purely on TD-error, however, can overlook the

task-specific behaviors of states, leading to what we term ”task-
agnostic” sampling problem, similar to representation learning
findings in [12]. This perspective fails to recognize that certain
states in a MDP, despite being structural dissimilar, can exhibit
similar long-term behaviors under the same policy, resulting in
similar expected returns in the long run. Bisimulation metrics
[2, 3, 4, 1] provides a means of quantifying this behavioral sim-
ilarity by considering both the immediate rewards and the ex-
pected future rewards (discounted over time), along with how
states transition under a given policy.

Leveraging this behavioral concept could prioritize more infor-
mative tuples in the experience replay by identifying state pairs
with significant behavioral differences as they often correspond
to more ’surprising’ transitions and improvements. Notice that by
prioritizing behavioral dissimilar states, we are encouraging di-
versity on the sampled data, and consequently more exploration.

In this work, we propose incorporating the on-policy bisimula-
tion metric into the prioritization process of an experience replay
to 1) mitigate the loss of diversity caused by TD-error prioritiza-
tion and 2) emphasize behaviorally relevant transitions, thereby
avoiding task-agnostic experience sampling.

2. Background
A finite Markov Decision Process (MDP) is defined as a 5-

tuple M = ⟨S,A,P,R, γ⟩, where S is a finite set of states, A is
a finite set of actions, P(s′|s, a) is the probability of transitioning
from state s ∈ S to state s′ ∈ S, R : S × A → R is the reward
function , and γ ∈ [0, 1) is a discount factor.

Initially introduced in the field of concurrency theory, bisimu-
lation serves as a form of state abstraction that groups states si
and sj that are ’behaviorally equivalent’ [7]. Givan et al. [5] later
adapted bisimulation relations for MDPs providing a strong form
of behavioral equivalence.

Definition 1. (Givan et al. [5]). Given an MDP M, an equiv-
alence relation B between states is a bisimulation relation if, for
all states si, sj ∈ S that are equivalent under B the following
conditions hold:

R (si, a) = R (sj , a) ∀a ∈ A,

P (G | si, a) = P (G | sj , a) ∀a ∈ A, ∀G ∈ SB ,
(1)

where SB is the partition of S under the relation B, and
P(G|s, a) =

∑
s′∈G P(s′|s, a).

Two states si, sj ∈ S are bisimilar if there exists a bisim-
ulation relation B such that (si, sj) ∈ B; consequently, their
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optimal value functions are equal, V ∗(si) = V ∗(sj).
The direct use of bisimulation relations is generally problem-

atic because these relations are highly sensitive to infinitesimal
variations in the reward function or dynamics, often resulting
from data-driven estimations. For this reason, bisimulation met-
rics [2, 3, 4, 1] have been proposed to provide a smoother no-
tion of similarity than that offered by strict equivalence relations.
These metrics are defined within a pseudometric space (S, d),
where a distance function d : S × S → R≥0 quantifies the ’be-
havioral similarity’ between two states.

In this context, Castro [1] proposed an on-policy bisimulation
metric that accounts for the dynamics induced by the current pol-
icy π, rather than those induced by the maximum among each
individual action (as explored in Ferns et al. work [2]). This met-
ric is particularly useful in RL schemes, addressing the dynamic
nature of the policy, which is iteratively improved as the agent
interacts with the environment.

Definition 2. (Castro [1] Theorem 2) π-bisimulation metric.

dπ(si, sj) = |Rπ
si −Rπ

sj |+ γWd(Pπ
si ,P

π
sj ) (2)

where ∀G ∈ SB ,Pπ
s (G) =

∑
a π(a|s)

∑
s′∈G P(s′|s, a),

Rπ
s =

∑
a π(a|s)R(s, a), and Wd is the d-Wasserstein metric.

3. Bisimulation Prioritized Experience Replay
Schaul et al. [10] argue that an ideal method for prioritizing

experiences in reinforcement learning (RL) is by the expected
learning progress, which is the amount the RL agent can learn
from a transition in its current state. They suggest the TD-error
(δ) as a effective surrogate metric, which reflects the ’surprising’
nature of a transition. In Deep Q-Network (DQN)*, for an expe-
rience tuple et = (st, at,Rt, st+1), the TD-error is defined as:

δt = |Rt + γmax
a′

Q(st+1, a
′; θ−)−Q(st, at; θ)| (3)

where Q represents the action-value function.
This work proposes an analogous surrogate through the on-

policy bisimulation metric dπ , which stills captures the ’surpris-
ing’ aspect of a transition, but additionally considers the behav-
ioral similarity with respect to the MDP. Specifically, this met-
ric prioritizes transitions between behaviorally dissimilar states,
which can lead to greater expected learning progress. For in-
stance, in Figure 1, while states s and u might exhibit structural
difference, they still have similar long-term behaviors, which do
not lead to considerable learning improvements. On the con-
trary, the state s and t exhibit both structural and behavioral
differences, which could lead to a higher potential for learning
progress.

While the TD-error could potentially exploit some transitions,
leading to a loss of diversity [10], the bisimulation metric con-
sistently encourages diversity in the experiences. This trade-off
between exploitation and exploration will be regulated by a pa-
rameter η ∈ [0, 1), resulting in the following mixed priority:

priorityt = (1− η)δt + ηdπ(st, st+1) (4)

*Note that analogous TD-errors could be defined in other RL algorithms.

Figure 1. A simple toy example: The goal of the sky-blue agent is to find
the shortest path to the green area while avoiding a moving obstacle that
shifts one cell at a time. Both u and t are possible next states from state
s. The states s and u are behavioral similar, while states s and t are not.

with sampling probability for the experience et given by

P (t) =
priorityα

t∑
k priorityα

k

(5)

where α controls the degree of prioritization.
This probability is assigned to each incoming experience tran-

sition and utilized to sample data from the experience replay dur-
ing the training phase. Similar to the standard prioritized experi-
ence replay method [10], certain implementation considerations
must be addressed, especially when dealing with large experience
replay databases. These considerations include potential biases
and sampling challenges, which are mitigated through the use of
importance sampling and efficient sampling techniques.

4. Proposed Experiments
While the bisimulation metric offers a robust theoretical frame-

work for behavioral similarity, calculating it, especially the
Wasserstein term W1, remains difficult in high-dimensional or
continuous state spaces. Based on Castro’s work [1], which in-
dicates computing the Wasserstein metric is no longer necessary
under a system with deterministic transitions, our experimenta-
tion will concentrate on deterministic MDP environments. In
these settings, each state-action pair leads to a unique subsequent
state, thus ensuring certainty of the next state. Additionally, Cas-
tro proposes a learnable approximation of the on-policy bisimu-
lation metric for large (or continuous) state spaces, which we will
adopt and train within the main RL loop.

The proposed methods will be tested in two different setups fo-
cusing on deterministic MDPs: 1) Grid Worlds, similar to those
shown in Figure 1, where calculating the bisimulation metrics is
relatively straightforward; and 2) Atari 2600 benchmark suite,
with modified background distractors akin to those described in
[12], to explore how the algorithm prioritizes behavioral dissim-
ilarity over structural dissimilarity..

5. Conclusion
This work pioneers the integration of the on-policy bisimula-

tion metric into experience replay prioritization, offering a nu-
anced alternative to traditional methods. The proposed mecha-
nism, blending TD-error and bisimulation metrics, demonstrates
a promising direction for handling the inherent complexities of
RL environments. By emphasizing behavioral dissimilarity, the
approach ensures a diverse and informative training set, poten-
tially accelerating learning and enhancing model performance.
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