

UNIVERSIDAD DE INVESTIGACIÓN DE

TECNOLOGÍA EXPERIMENTAL YACHAY

Escuela de Ciencias Matemáticas y Computacionales

TÍTULO: Path Planning Simulation in

Controlled Environments using the

Ant Colony Optimization Algorithm

Trabajo de integración curricular presentado como requisito para la

obtención del título de
Ingeniero en Tecnologías de la Información

Autor:

Guarnizo Cabezas Oscar Vicente

Tutor:

Ph.D Israel Pineda

Urcuquí, marzo 2020

Autoría

Yo, Oscar Vicente Guarnizo Cabezas, con cédula de identidad 1718546219, declaro
que las ideas, juicios, valoraciones, interpretacioiaes, consultas bibliográficas, definiciones y •
conceptualizaciones expuestas en el presente trabajo: así cómo, los procedimientos y her
ramientas utihzadas en la investigación, son de absoluta responsabilidad de el autor del
trabajo de integración curricular. Así mismo, me acojo a los reglamentos internos de la
Universidad de Investigación de Tecnología Experimental Yachay.

Urcucjuí. marzo 2020.

Oscar Vicente Guarnizo Cabezas
C I : 1718546219

Autorización de publicación

Yo, Oscar Vicente Guarnizo Cabezas, con cédula de identidad 171854G219, cedo a la
Universidad de Tecnología Experimental Yachay, los derechos de publicación de la presente
obra, sin ĉ ue deba haber un reconocimiento económico por este concepto. Declaro además
que el texto del presente trabajo de titulación no podrá ser cedido a ninguna empresa edi
torial para su publicación u otras fines, sin contar previamente con la autorización escrita
de la Universidad.

Asimismo, autorizo a la Universidad que realice la digitalización y publicación de este t ra
bajo de integración curricular en el repositorio virtual , de conformidad a lo dispuesto en el
Art . 144 de la Ley Orgánica de Educación Superior.

Urcuquí. marzo 2020.

Oscar Vicente Guarnizo Cabezas
C I : 171854G219

Dedication

“To my family and my friends because their motivation and support helped me to reach
this point in my life.”

v

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer vi Final Grade Project

Acknowledgments

Foremost, I would like to express my sincere gratitude to my principal advisor Israel Pineda
Ph.D., for the continuous support of my study and research, for his patience, responsibility,
motivation, and enthusiasm. His guidance helped me in all the time of research and writing
of this thesis. Admittedly without his help and assistance, the publication of the preliminary
results of this project would not have been possible.

Besides, I would like to acknowledge Lorena de los Angeles Guachi Guachi Ph.D., who
collaborated in the initial stages of my project. Her comments and guidance supported me
to focus my work in the early stages. Her support was undoubtedly appreciated, particularly
in the drafting and structure of the present document.

I would also like to thank my friends and colleagues, who gave me ideas and comments
about my project. Mainly, I have to highlight the observations of Fernando Zhapa, Anthony
Ramos, and Joseph Gonzalez, which were considered in this project.

Last but not least, I would like to fondly thank my family, who always motivated and
supported me in my college life. Without their guidance, I would not have successfully
completed this stage of my life.

vii

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer viii Final Grade Project

Resumen

La Planificación de Rutas es un tema ampliamente estudiado debido a sus diversas apli-
caciones en robótica, planificación de socorro, planificación de rutas comerciales e incluso
en la industria de los videojuegos. En consecuencia, los métodos computacionales de plan-
ificación de rutas son diversos, buscan resolver problemas en entornos desconocidos hasta
encontrar un camino con la navegación más fluida. Desafortunadamente, esta diversidad
provoca que algunos métodos pasen por alto ciertos aspectos al atender un problema de
propósito espećıfico. En este proyecto, proponemos analizar caracteŕısticas como el tiempo
de ejecución, la adaptabilidad y las representaciones del entorno. La literatura muestra
que las implementaciones actuales tienen limitaciones en algunos de estos aspectos. En
muchos casos, algunas técnicas tienen un rendimiento satisfactorio en una o dos de estas
caracteŕısticas, pero una deficiencia en las demás. Por esta razón, el presente proyecto
tiene como objetivo diseñar un algoritmo de planificación de ruta basado en textit Ant
Colony Optimization (ACO), que considera mejoras para estas limitaciones.

El diseño y la parte experimental de este trabajo se basaron en un estilo incremental.
En este sentido, propusimos un algoritmo básico, y luego agregamos algunas interacciones
globales y locales para tratar algunos de los problemas. Luego, seleccionamos las config-
uraciones con el mejor rendimiento para definir nuestra propuesta final y compararla con
otros métodos ya conocidos. Finalmente, mostramos algunos resultados en una simulación
gráfica para mostrar su comportamiento adaptativo. El algoritmo ha demostrado resolver
las limitaciones antes mencionadas. Mientras trabajábamos con una metaheuŕıstica, no
siempre obtuvimos resultados óptimos, sino soluciones factibles lo suficientemente buenas
para las aplicaciones de la técnica. Sin embargo, el algoritmo genera resultados promete-
dores con una precisión de 95% aproximadamente.

Palabras Clave: Planificación de Ruta, Optimización de Colonia de Hormi-
gas, Inteligencia de Enjambres, Simulación Gráfica.

ix

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer x Final Grade Project

Abstract

Path Planning is a widely studied issue due to its several applications in robotics, relief
planning, trade route planning, and even in the video game industry. Consequently, the
computational methods of path planning are diverse, seeking to solve problems in unknown
environments until finding a trail with the smoothest navigation. Unfortunately, this diver-
sity provokes that some methods overlook certain aspects by attending a specific-purpose
problem. In this project, we propose to analyze characteristics as the execution time, the
adaptability behavior, and the environment representations. The literature shows that
current implementations have limitations in some of these aspects. In many cases, some
techniques have satisfactory performance in one or two of these features, but a deficiency
in the others. For this reason, the present project aims to design a path planning algo-
rithm based on Ant Colony Optimization (ACO), which considers improvements for these
limitations.

The design and experimental part of this work were based on an incremental style.
In this sense, we proposed a basic algorithm, and then we add some global and local
interactions for dealing with some of the issues. Then, we selected the configurations
with the best performance to define our final proposal and compare it with other already
known methods. Finally, we display some results in a graphic simulation to showcase
its adaptive behavior. The algorithm has proved to solve the aforementioned limitations.
While working with ACO metaheuristic, we did not always obtain optimal results but good-
enough feasible solutions that are fit for the applications of the technique. Nevertheless,
the algorithm generates promising results with an accuracy around the 95% approximately.

Keywords: Path Planning, Ant Colony Optimization, Swarm Intelligence,
Graphic Simulation.

xi

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer xii Final Grade Project

Contents

Dedication v

Acknowledgments vii

Resumen ix

Abstract xi

Contents xiii

List of Tables xvii

List of Figures xix

1 Introduction 1
1.1 Background . 1
1.2 Natural Behavior of ACO . 2
1.3 Problem statement . 2
1.4 Objectives . 2

1.4.1 General Objective . 2
1.4.2 Specific Objectives . 2

2 Theoretical framework 3
2.1 Path Planning . 3

2.1.1 Environment Representation . 4
2.2 Path Planning and Ant Colony Optimization 7

2.2.1 Initial Parameters . 8
2.2.2 Finding Paths Methods . 10
2.2.3 Movement Choice . 11
2.2.4 Pheromone Reinforcement . 13
2.2.5 Pheromone Evaporation . 16
2.2.6 Algorithm Ending . 17

xiii

School of Mathematical and Computational Sciences YACHAY TECH

3 State of the Art 19
3.1 Exact or Complete Algorithms . 19

3.1.1 Dijkstra Algorithm . 20
3.1.2 A* Search Algorithm . 22

3.2 Comprehensive Search Algorithms . 25
3.2.1 Breadth-First Search . 25
3.2.2 Depth-First Search . 26

3.3 Metaheuristics Algorithms . 27
3.3.1 Genetic Algorithm . 27

3.4 Artificial Intelligence Algorithms . 30
3.4.1 Reinforcement Learning - LRTA* 30

4 Methodology 33
4.1 Phases of Problem Solving . 33

4.1.1 Description of the Problem . 33
4.1.2 Analysis of the Problem . 34
4.1.3 Algorithm Design . 34
4.1.4 Implementation . 34
4.1.5 Testing . 34

4.2 Model Proposal . 35
4.2.1 General Mesh Environment . 35
4.2.2 Basic ACO algorithm - ACOv0 . 36
4.2.3 Global Interactions - Random Walks 40
4.2.4 Local Interactions . 42
4.2.5 Graphic Simulation . 49

4.3 Experimental Setup . 51
4.3.1 Data Generation Method . 51
4.3.2 Analysis Method . 55

5 Results and Discussion 61
5.1 Performance Evaluation of ACOv0 . 61
5.2 Evaluation of Global Interactions Performance 67
5.3 Evaluation of Local Interactions Performance 73
5.4 Evaluation of Several Methods . 79
5.5 Qualitative Evaluation of Graphic Simulation 83
5.6 General Results . 84

6 Conclusions 87
6.1 Conclusion . 87
6.2 Recommendations . 88
6.3 Future Work . 89

Bibliography 91

Appendices 95

Information Technology Engineer xiv Final Grade Project

Glossary

action An action is the process of change from one state to another state by a specific
path planning algorithm or criteria. 3

ant undertaker It is a special type of ant which is in charge of the necrophoresis process.
In the computational model, this ant controls the stuck condition reinforcing the
necrophoresis value κij. 47

cells A cell is a convex simple geometric figure with different shapes, such as squares,
hexagons, and others. A cell is used to describe a state in cell decomposition repre-
sentation. 4

entity An entity is a character, vehicle, robot, or representation of a person who performs
the path planning activity. 1

episode An episode is defined as a completed iteration where all the ants already have
tried to find a route.. 37

exhaustive search It is a search that analyzes all the states of a graph or another envi-
ronment representation. This search often spends a long time in the computation of
a solution. 25

exploitation It is the ability of an algorithm to focus on the best solution so far. It is the
opposite concept of exploration. Thus, if the exploitation is greater, the algorithm
will reinforce the current solution, without analyzing additional possible solutions.
55

exploration It is the ability of an algorithm to explore different feasible solutions in the
searching space. Thus, if exploration in greater, the algorithm can find more variety
of solutions.. 9, 55

extrusion The extrusion of a node provokes the displacement of that node outside the
land relief. 51

feasible solution It is a good solution which can be found in a specific problem, not
necessarily the optimal solution. 27

heuristic This term is used to define the predefined information, which is used in a
problem-solving method. The additional measure or data can be expressed as the
cost wij of an edge in a problem based on graphs. 8

xv

School of Mathematical and Computational Sciences YACHAY TECH

intrusion The intrusion of a node provokes the insertion of that node inside the land
relief. 51

maze environment A maze environment is an environment with many obstacles or fewer
edges, forming a kind of maze. 54

metaheuristic It is a high-level problem-independent algorithm that provides a set of
guidelines or policies to improve a heuristic algorithm. This process does not guar-
antee the generation of an optimal solution, only a feasible solution. 1

minimal spanning tree It is a sub-graph that contents all the nodes of the original
graph without forming any cycle (in other words, a tree). The main feature of this
sub-graph is that it contains the lowest possible accumulated weight. 54

necrophoresis It is a natural behavior that happens in real ants. In this event, the ant
undertakers carry the dead bodies of colony members from the environment to the
nest . 47

optimal solution It is the best solution which can be found in a specific problem. 19

pathfinding It is the ability to determine appropriate motion actions that lead to the
desired goal. This approach commonly works with well-known environments. 1

pheromone It is a secreted or excreted chemical substance that provokes a social response
in members of the same species. In the computational model, this pheromone is
represented by a numerical value. 2

potential field In terms of path planning, a potential field is a three-dimensional rep-
resentation of a two-dimensional environment. This representation is useful for de-
scribing the evolution or variation of space configuration (states). 5

pseudo-random generator It is a method used in ACO algorithms to generate pseudo-
random path based on a heuristic measure.. 12

state A state is a representation of the position of an entity in the environment. 3

stigmergy It is an environmental mechanism to regulate the activity of independent actors
or agents. 2, 7

time list It is a list or a data structure which stores the priority of an ant for taking a
specific state in the environment. 10

visited list It is a list or a data structure which stores the nodes which have already been
visited by the ants. 10

Information Technology Engineer xvi Final Grade Project

List of Tables

2.1 Reinforcement Techniques . 15

4.1 Experimental Set for Mountain, Valley, U-terrain and Perlin Noise 53
4.2 Cost Values of the Experimental Set . 54

5.1 Parameters of ACOv0 . 61
5.2 Parameters of Random Walk Experiments 67
5.3 Parameters of Local Interations Experiments 73
5.4 Several Methods Initial Parameters or Preprocessed Information 79
5.5 Best Result of Global Interactions Experiments 85
5.6 Best Result of Local Interactions Experiments 85
5.7 Best Result for Several Methods Comparison 86

xvii

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer xviii Final Grade Project

List of Figures

2.1 Path Planning Environment with Obstacles, retrieved from [1]. 3
2.2 Obstacle Approximation Decomposition of Cells. Retrieved from [1]. 5
2.3 Visibility Map and Voronoi Graph. Retrieved from [1]. 5
2.4 Potential Field Method Example. Retrieved from [1]. 6
2.5 PRM Method. Learning phase, and path searching phase. Retrieved from [1]. 7

3.1 State of Art: Path Planning Algorithms based on Graphs 19
3.2 A* Tag Information . 20
3.3 Dijkstra Algorithm Process . 21
3.4 A* Tag Information . 23
3.5 A* Search Algorithm Process . 24
3.6 Breadth-First Search Algorithm Process. Retrieved from [1] 25
3.7 Depth-First Search Algorithm Process. Retrieved from [1] 26
3.8 Genetic Operators. Retrieved from [2] . 29
3.9 LRTA* Search Algorithm Process. Retrieved from [3] 31

4.1 Phases of Problem Solving. 33
4.2 Proximity . 36
4.3 Proximity Random Walk Process with Mrw = 2 41
4.4 Final Route of Proximity Random Walk 41
4.5 Semi-Proximity Random Walk Process with RNrw = 3. 42
4.6 Final Route of Semi-Proximity Random Walk 42
4.7 Local Search - Minimal Conditions for Forbidding a Node 44
4.8 ACOv2 Graphical Process with RNk = 3 45
4.9 ACOv4 Graphical Process with Vk = 2 . 45
4.10 ACOv3 Graphical Process with RNk = 3 47
4.11 ACOv5 Graphical Process with Vk = 2 . 48
4.12 Slopes Functions with Different Paraters ω and c 50
4.13 3D Technique. a) positive slope, b) negative slope. 50
4.14 Mountain Environment: two-dimensional mesh without Extrusion or Intru-

sion, and three-dimensional mesh with Extrusion or Intrusion. 51
4.15 Different Experimental Environments . 52
4.16 Random Maze Environments Examples: 5× 5, 9× 9 and 17× 17 55
4.17 Percentage of Environment Learned (PE). 56

5.1 Execution Time by Size of Environment - ACOv0 62

xix

School of Mathematical and Computational Sciences YACHAY TECH

5.2 Episodes by Size of Environment - ACOv0 63
5.3 Accuracy by Size of Environment - ACOv0 64
5.4 Percentage of Environment Learned by Size of Environment - ACOv0 . . . 65
5.5 Biplot ACOv0. Explained: 78,3% + 17,8% 66
5.6 Random Walk Comparison Execution Time 67
5.7 Random Walk and ACOv0 Comparison Execution Time 68
5.8 Random Walk and ACOv0 Comparison Episodes Number 69
5.9 Random Walk and ACOv0 Comparison Accuracy 70
5.10 Random Walk and ACOv0 Comparison Percentage Environment Learned . 71
5.11 Biplot Random Walk Comparison. Explained: 85,9% + 13,2% 72
5.12 Local Interactions Comparison Execution Time 74
5.13 Local Interactions Comparison Episodes Number 75
5.14 Local Interactions Comparison Accuracy 76
5.15 Local Interactions Comparison Percentage Environment Learned 77
5.16 Biplot Local Interactions Comparison. Explained: 60,2% + 34,0% 78
5.17 Accuracy Comparison of Different Methods of Path Planning 80
5.18 Route 1. Execution Time Comparison of Different Methods of Path Planning 81
5.19 Route 2. Rerouting Time Comparison of Different Methods of Path Planning. 82
5.20 Environment Configuration in Graphical Simulation 83
5.21 Graphic Simulation Screenshots . 84

1 Random Walk Phase. Environment with Obstacles 101
2 Route 1. Environment with Obstacles . 102
3 Obstacle Addition and Killed Ants. Environment with Obstacles 102
4 Rerouting Phase or Route 2. Environment with Obstacles 103
5 Menu . 103

Information Technology Engineer xx Final Grade Project

Chapter 1

Introduction

1.1 Background
Path planning, from an initial position to a final position, is a widely studied topic by its
several applications in engineering problems such as the moving of autonomous robots [4]
[5] [6], problems of routing vehicles in traffic [7] [8], natural disaster relief planning [9] [10],
and even the moving of non-player characters in the video game industry [11] [12] [13].
For its grand utility, path planning faces different problems and challenges, some of them
related to kinematic constraints, dynamic constraints, and decision algorithms. In this
sense, this problem challenges researchers to overcome or simulate the ability of human
beings to avoidance obstacles and to react to environmental changes in an accurate way.

The way of dealing with path planning is commonly subject to its immediate applica-
tion or its constraints. Nevertheless, the researchers frequently summarize this problem
from two points of view: pathfinding and obstacle avoidance, which can be seen as global
and local problems, respectively. On the one hand, the pathfinding focuses on determining
appropriate motion actions that lead to the desired goal. This approach commonly works
with well-known environments. On another hand, the obstacle avoidance technique seeks
to control the immediate reaction of an entity to possible changes or obstructions. This
approach commonly works with a partially known or unknown environment. Depending on
the approach; we could work in different environments representations such as graphs [14]
[15], cell decomposition [16] [17], road map [18], [19], potential field [20] [21], or sampling-
based [22] [23]. Besides, we could work with different aims in mind finding routes one to
one, one to many, many to one or many to many.

In the present work, we dealt with the specific aim of finding routes one to one in
a well-known environment with the use of graphs. The project proposal involves the
use of an Ant Colony Optimization (ACO) algorithm for the pathfinding decision and
obstacle avoidance. The ACO algorithm is a metaheuristic algorithm based on the natural
behavior of ants which tend to find the shortest path when they find a food source [24] [25].
In comparison with the main algorithms, the ACO algorithm has some advantages such
as the reduction of time, the immediate parallelization capacity, the collective behavior,

1

School of Mathematical and Computational Sciences YACHAY TECH

and the spontaneous adaptation to new heuristic metrics. However, the ACO algorithm
does not guarantee the convergence to the optimal solution, but only a feasible solution
which, in many applications, is enough. Finally, we propose to add new features to the
ACO basic algorithm to improve its convergence time, its adaptability behavior and its
three-dimensional performance.

1.2 Natural Behavior of ACO
In nature, it has been studied the behavior of Argentine Linepithema humile ants [26].
These ants have a collaborative phenomenon know as Stigmergy. This behavior works
in the following way. First, the ants start to perform a random walk until they reach a
food source. Then, the ants return to the colony, releasing pheromones on the traveled
path. Other ants feel these pheromones and tend to follow large concentrations of them.
Ants repeat this process until they reach a route with a large number of pheromones. The
pheromones evaporate by the environmental conditions. In this way, paths not so visited
has less concentration of pheromones. The evaporation, therefore, ensures that the ants
converge to paths with a high quantity of pheromones. We can describe this mechanism
as positive feedback on shorter routes and negative feedback on longer paths [25].

1.3 Problem statement
Path planning is a quite diverse topic by its several approaches at global and local lev-
els. In this sense, the problem promotes extensive research considering different approaches
according to its specific applications. Nevertheless, some current approaches present limita-
tions regarding the execution time, the adaptability, and the environment representations.
In many cases, some implementations have satisfactory performance in one or two of these
features, but a deficiency in the others. For these reasons, this project presents an approach
based on the Ant Colony Optimization, which seeks to deal with these limitations.

1.4 Objectives

1.4.1 General Objective
Develop an adaptive path planning simulation able to adjust to environmental changes
using Ant Colony Optimization Algorithm in a three-dimensional space.

1.4.2 Specific Objectives
• Implement global and local interactions over ACO algorithm to guarantee the adapt-

ability and the convergence of the algorithm on large environments.

• Compare the proposal method with other methods found in the literature review.

• Visualize the results in a three-dimensional simulation in real time.

Information Technology Engineer 2 Final Grade Project

Chapter 2

Theoretical framework

In this chapter, the necessary concepts for understanding the present work are introduced.
In this way, this chapter starts with the bases of path planning and the current panorama.
Then, it is explained the mathematical background of the ACO algorithm and possibles
variants of its principal features: parameters, movement choice, reinforcement, and evap-
oration techniques.

2.1 Path Planning
The explanation below is mostly based on the Path Planning chapter of Wheeled Mobile
Robotics, retrieved from [1].

Figure 2.1: Path Planning Environment with Obstacles, retrieved from [1].

Path planning is the process of finding a continuous path that guides an entity from
a start position to the final position. This complete path must fill in the free space of
the environment (paths that do not collide with obstacles), Fig. 2.1. To this end, path
planning considers the idea of states and actions. The states give the positions of the
entity in the environment, and they can be represented by several notions such points,
cells, grids, and others. In this sense, an entity must always be in a state. On the other

3

School of Mathematical and Computational Sciences YACHAY TECH

hand, an action is defined as the process for moving an entity from one state to another. A
feasible path is, therefore, a sequence of actions that guide the entity from start state to the
target, through some intermediate states. Thus, it could be possible to find several feasible
solutions for each pair of states. The actions of an entity are subject to the path planning
algorithm and used criteria. In this sense, the algorithm can take several directions based
on the desired optimal solution:

• The optimal path must have the shortest possible length.

• The optimal path is the one in which the entity can pass in the shortest time.

• The optimal path should be as far as possible from the obstacles.

• The optimal path must be smooth without sharp turns.

• The path must consider motion constraints (e.g. where at the current time, not all
directions are possible).

Besides, the path planning can take additional directions based on the primary purpose
of the algorithm.

• Start and Final Positions: algorithms with solutions one to one, one to many,
many to one, or many to many.

• Knowledge of the Environment: algorithms based on local analysis [6] [23] (un-
known or partially unknown environment) and algorithms based on global pathfind-
ing techniques (completely known) [19] [27].

• Number of Entities: single navigation [19] [6] and multiple navigation algorithms
[9] [4].

2.1.1 Environment Representation
1. Graph Representation

The idea of graph representation is to reduce the free space to a subset of states
that includes the start and final state. This subset is formed by the nodes and the
edges of a graph. In this sense, the states are the nodes, and the possible actions
are the edges (connections). The graph can be weighted or directed. In a weighted
graph, each edge contains a measure of the cost that is needed for transition (actions)
between the connected nodes (states). In a directed graph, the connections also have
a possible direction. Thus, the cost can be different depending on the direction.
Some examples of this representation are [14] [15] [27].

2. Cell Decomposition

In this technique, the configuration space could be partitioned to cells. These struc-
tures can adopt different simple geometric shapes, such as squares, hexagons, and

Information Technology Engineer 4 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

others. In this sense, the states are the cells, and the actions are the connections
between neighbor cells. Thus, if the entity falls in some points into a cell, the entity
occupies that state. For this reason, cells must be convex; any straight line segment
connecting any two points inside the cell must lie entirely in that cell. In this kind of
representation, it is possible to contain obstacles of different shapes into the cells im-
plementing a previous approximation, Fig.2.2. Some examples of this representation
are [16] [17] [28].

Figure 2.2: Obstacle Approximation Decomposition of Cells. Retrieved from [1].

3. Road Maps

A road map (a map that contains roads) consists of lines, curves, and points of
intersections that occupy the configuration space according to specific criteria. In this
sense, the states are represented by the intersections points, also known as vertices.
Furthermore, the actions are the lines or curves which connect the vertices. The
challenge is, therefore, to find a minimum number of roads that allow access to
any free part of the environment, including the start and final state. Two common
examples of road maps are Visibility Map and Voronoi Graph, Fig. 2.3. Some
examples of this representation are [29] [18] [19].

Figure 2.3: Visibility Map and Voronoi Graph. Retrieved from [1].

4. Potential Field This technique represents the environment with a potential field,
which can be thought of as an imaginary height. In this representation, the final

Information Technology Engineer 5 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

state is in the bottom, and the height increases with the distance to the final state;
the obstacles even have a higher height. In this sense, the path planning criteria can
be explained as the movement of a ball that rolls downhill to the final state, Fig. 2.4.
Some examples of this representation are [20] [21] [30].

Figure 2.4: Potential Field Method Example. Retrieved from [1].

5. Sampling-Based
The previous techniques require an explicit representation of the free space environ-
ment. These methods, therefore, tend to become time-consuming by increasing the
dimension of the space. On another hand, in sampling-based methods, the free space
is not known a prior; instead the algorithms must make a decision based on the local
information. To this end, this method implements a collision detection criteria that
implements random points, used to verify free spaces. These points and their connec-
tions allow producing a path between the start state and the final state. Additionally,
to reduce processing time, the collision detection is checked only for obstacles that
are close enough and present a potential hazard of collision. Some common examples
of this method are Rapidly Exploring Random Tree (RTT) and Probabilistic Road
Maps (PRM), Fig. 2.5. Some examples of this representation are [22] [23] [31].

Information Technology Engineer 6 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 2.5: PRM Method. Learning phase, and path searching phase. Retrieved from [1].

2.2 Path Planning and Ant Colony Optimization
The origin of the Ant Colony algorithm arises in 1992, by Marco Dorigo in his doctoral
dissertation [26]. His algorithm was based on the behavior of ants, called the Ant System
(AS), for resolving the classical Travelling Salesman problem. Since then, it was researched
the algorithm, especially in its applications for resolving combinatorial optimization prob-
lems and was called Ant Colony Optimization (ACO) [25] [32]. Later, this algorithm will
be used in other applications like clustering [33], data mining [34], path planning, and oth-
ers. From the last examples, the Path Planning has a particular research interest because
it seems to have a connection with the real behavior of ants on nature. In a nutshell, the
path planning and the stigmergy behavior seem to be similar problems, Section 1.2.

The present work proposes to solve the Path Planning problem using an Ant Colony
Optimization algorithm. In this direction, it is essential to describe all the preliminary
considerations and already known techniques. The first step to solve a path planning
problem is to interpret the environment of work. In this way, this project implements an
undirected weighted graph G(N,E) where N is the set of nodes, and E is the set
of edges. This representation helps us to scale the real problem to a bounded specific
representation. Besides, we pretend to solve the path planning problem one to one
where the aim is to find the least cost path. The cost of a path (n1, n2, ..., nk) , therefore,
can be denoted by Equation 2.1.

C =
k−1∑
i=1

wi,i+1 (2.1)

where wi,i+1 is the cost of each edge of the path. This cost can be represented by any
kind of heuristic measure.

Besides, this specific path planning problem can appear in different conditions according
to the initial node s, and the target node t. The variants of the problem can be:

Information Technology Engineer 7 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• SP between a pair of nodes with s and t known.

• SP with s known and t unknown.

• SP with t known and s unknown.

After considering the preliminary information, it is necessary to establish a background
of the state of the proposed research. In this way, the explanation below reflects the prin-
cipal considerations that can be taken to drive the research of this specific problem. The
following information is mostly based on some articles, retrieved from [25], and [35]. From
this point we will refer to the algorithm of Path Planning based on Ant Colony Optimiza-
tion as PPACO.

The PPACO algorithm includes several sub-problems that can be analyzed separately.
This division allows researchers to choose and adjust each sub-problem of the algorithm
according to their needs. Besides, these sub-problem categorization allows that the model
can deal with different variants of the problem [25].

2.2.1 Initial Parameters
The PPACO algorithm uses the following parameters:

• A: population size of ants.

• α: a parameter that defines the influence of pheromones on the choice of the next
node.

• β: a parameter that defines the influence of heuristic criteria wi,j on the choice of
the next node.

• ρ: a parameter that defines the evaporation speed of the pheromones on the environ-
ment. It takes values between the interval [0, 1].

• τ0: the initial amount of pheromone on edges.

• τmax, τmin: the minimum and maximum acceptable amount of pheromone on edges.

• Q: a parameter that defines the number of pheromones that can be distributed on
the edges of a specific path.

The population size of ants A alters the accuracy and the execution time of the solution.
A larger population size of ants allows us to generate more feasible solutions, which can
improve the global search ability. This better searching can help us to find more accurate
solutions. However, if there are multiple optimal paths, the concentrations of pheromones
of both paths will not vary too much. These concentrations produce more randomness in
the choosing of next nodes, and hence more execution time. On the other hand, if A is
smaller, some paths never will be analyzed. It is because the amount of pheromone will be
completely volatilized, converging to optimal local solutions. In that way, this parameter
allows us to negotiate between exploring ability and the algorithm time reduction. In some

Information Technology Engineer 8 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

cases, we can also apply an adaptive parameter, Equation 2.2, retrieved from [35]. By this
parameter, the population size is reduced sharply in the early stages, and less in the last
stages.

A =

A0 − Amin · epi

epmax
if A ≥ Amin

Amin otherwise

(2.2)

where A0 is the initial population size, Amin is the minimum population size, epi is the
current episode, epmax is the maximum number of episodes.

The parameter α and β allow us to modify the choosing of the next node. Thus, you can
give predominance to the pheromones over the heuristic criteria, as time passes. In other
words, the values of α and β follow this criteria α > β. Moreover, it could be important to
maintain a short distance between these two parameters in some specific implementations.
In other words, it could be necessary establish something like |α − β| < e, where e is a
small constant value. This avoids to give a lot of predominance to a pheromones over the
heuristic criteria.

The parameter ρ states the speed of evaporation. On one hand, a quicker evaporation
speed guarantees the exploration of new solutions. On the other hand, a slower speed allows
focusing in the already found solutions, in other works it guarantees the convergence.
The objective is finding an appropriate value which allow us to explore new solutions
whereas the algorithm converges to a solution. Moreover, one of the possibilities is reducing
the evaporation speed whereas the time passes. It is translate to implementation of the
Equation 2.3, retrieved from [35].

ρ(epi+1) =

φ · ρ(epi) if ρ(epi) ≥ ρmin

ρmin otherwise
(2.3)

where φ ∈ [0, 1] is a parameter that reduces the ρ value, ρmin is the minimum value of
ρ (evaporation factor), epi is the current episode, epi+1 is the next episode. As a result, ρ
has a large value in the early stage of the algorithm, and has a minimal value in the last
stages.

The parameters which can adjust the contribution of pheromones are τ0, τmin, τmax,
and Q. The parameters τmin and τmax states lower and upper bounds of the number of
pheromones per edge. These bounds can allow controlling the level of pheromones in syn-
chronization with the evaporation speed. Moreover, these bounds can help to explore new
solutions without losing the previous information. If we choose a small value of τmax, this
value can be reached quickly. In that way, it can fill with τmax more of one feasible so-
lution. However, it also can produce problems if the algorithm fills τmax over bad paths.
On another hand, in many cases, the τ0 is defined like the minimum value of pheromones,
τ0 = τmin. The Q parameter can work in two different ways. It can be the amount of
contribution per edge of a path or the total contribution of the path. The use of these
parameters can vary in dependency of the problem conditions. These parameters had been

Information Technology Engineer 9 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

analyzed in a better way on the evaporation and reinforcement techniques analysis.

Lists with some information also can be taken depending on the path planning variants.
These additional structures can be an occupation time list and the already visited list of
nodes or edges. The occupation time list helps us to avoid that several ants being in the
same node at the same moment. On the other hand, the visited list of nodes or edges
allows us to avoid returning to back positions.

2.2.2 Finding Paths Methods
One of the principal features of a PPACO algorithm is the set of rules which will be used
to establish the computational dynamics of the algorithm. For this reason, it is essential
to establish the procedures for finding a path from the initial node to the end node. Two
principal computational dynamics highlight in the researches: Step by Step and Time List.

1. Step by Step Method

This method is an iterative sequential process where each ant finds a whole path one
after another.

On the one hand, The reinforcement of pheromones can occur in two ways:

• The reinforcement occurs when an ant finds a complete path.
• The reinforcement occurs when an ant moves from one node to another.

On the other hand, the evaporation of pheromones can occur in different stages of
the algorithm.

• The evaporation occurs after each ant finds a whole path.
• The evaporation occurs after all the ants find a complete path
• The evaporation occurs in both of the previous cases.

The reinforcement and evaporation techniques will be explained in a better way in
the Sub-sections 2.2.4, 2.2.5, respectively.

2. Time List Method

This method uses a time list for recording the time in which an ant reaches a given
node. It is a concurrent method where the evaporation occurs with each transition
of the next ant in the time list. The reinforcement of pheromones occurs after an
ant reaches the target node. The value ∆τ lays down in each edge of the path. The
implementation of the time list allows that an ant that reaches the target node can
lay down pheromone over trail earlier than the other ants. In that way, the ants,
which do not reach the target node yet, will be influenced by the pheromones ear-
lier. However, this method introduces some additional procedures which can provoke

Information Technology Engineer 10 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

some redundancies. These redundancies can be compensated by the more effective
reinforcement of short paths and better adjustment. The reinforcement and evapo-
ration techniques will be explained in a better way in the Sub-sections 2.2.4, 2.2.5,
respectively.

2.2.3 Movement Choice
The choice of next node uses a probability function, Equation 2.4, which states the prob-
ability of the ant k for moving from the node i to the node j.

pkij = qij∑
l∈N qil

(2.4)

where N is the set of all the next possible nodes j, and qij is the coefficient of the
edge eij. After measuring the probability of each edge, we throw a dice or random number
rn uniformly distributed between [0, 1]. Using this random number, we choose an edge
randomly but given more opportunity to the nodes with more probability.

• Edge Coefficient qij

The choice of the next node is directly influenced by the edge coefficient of qij.
This value considers the parameters α and β, which controls the influence of the
pheromones τij over the heuristic criteria ηij. The heuristic criteria can be any ad-
ditional measure that can be known previously or be measured during the execution
of the algorithm. Another additional information, which can be useful, is the infor-
mation about the already visited nodes or edges. According to this information, we
can use a qij with different behavior. Some examples of the possible edge coefficients,
retrieved from [25], are given by Equation 2.5.

qij = ταij · η
β
ij (2.5a)

qij = τij · α + (1− α) · ηij (2.5b)

qij =

ταij · (1 + β) if is visited(nj) = false

ταij otherwise
(2.5c)

qij =

ταij · (1 + β) if is visited(eij) = false

ταij otherwise
(2.5d)

Information Technology Engineer 11 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

qij =

ταij · (1 + β)2 if

is visited(nj) = false

is visited(eij) = false

ταij · (1 + β) if

is visited(nj) = true

is visited(eij) = false

ταij · (1 + β) if

is visited(nj) = false

is visited(eij) = true

ταij otherwise

(2.5e)

The edge coefficient method is crucial for the performance of the algorithm. In this
way, according to the method, we can get different behaviors. If we can prioritize a
quickly convergence (not necessarily the most optimal solution), we can choose the
Equations 2.5a, 2.5b. If we can to explore features of the nodes and edges, we can
choice the Equations 2.5c, 2.5d, 2.5e. Moreover, the last options can help us to avoid
to return to back positions. However, it can take more execution time and memory
consumption.

• Pseudo-Random Generator and Initial Edge Coefficients q′ij

In complex graphs, the edge coefficient, qij, is not enough to choose the next node
correctly. Because in the early stages of the algorithm, the environment is limited
to fewer pheromones. In that way, the convergence can get stuck in the first feasible
paths found. For solving this problem, we can use a pseudo-random generator
which includes randomness to the edge selection, using an initial edge coefficient, q′ij
[25]. This kind of problem frequently happens when we have a high number of edges
with uniform (equal) probabilities. In that way, the Equation 2.4 is replaced by the
Equation 2.6.

pkij = rij∑
l∈N ril

(2.6)

where rij follows the Equation 4.2b.

rij =

q′ij if epi < δ or τij = 0

qij otherwise
(2.7)

where epi is the current episode, and δ is a constant scalar number that can be fixed.
There are several ways of writing the initial edge coefficient, q′ij. In the Equation 2.8,
we can see some examples, retrieved from [25]. In these examples, the parameter α
is reused to limit the number of parameters. Thus, the α parameter is used as the
power of the heuristic measure or its inverse.

Information Technology Engineer 12 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

q′ij = ηαij (2.8a)

q′ij = (1
ηij

)α (2.8b)

q′ij =

ηαij · (1 + β)2 if

is visited(nj) = false

is visited(eij) = false

ηαij · (1 + β) if

is visited(nj) = true

is visited(eij) = false

ηαij · (1 + β) if

is visited(nj) = false

is visited(eij) = true

ηαij otherwise

(2.8c)

q′ij =

(1
ηij

)α · (1 + β)2 if

is visited(nj) = false

is visited(eij) = false

(1
ηij

)α · (1 + β) if

is visited(nj) = true

is visited(eij) = false

(1
ηij

)α · (1 + β) if

is visited(nj) = false

is visited(eij) = true

(1
ηij

)α otherwise

(2.8d)

2.2.4 Pheromone Reinforcement
The reinforcement techniques are related with the Finding Paths Methods, Subsection
2.2.2. However, according to the conditions of the problem, we can combine different
reinforcement techniques for finding new strategies. These techniques influence the decision
made by the ants on the move stage. According to [25], the main reinforcement techniques
are progressive, backward, overall, and selective.

• Progressive
In this technique, the algorithm reinforces the pheromone trail when an ant moves
from one node to another, during the search of a path.

• Backward
In this technique, the reinforcement of the trail starts when an ant finds a whole path.

Information Technology Engineer 13 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

At this moment, the ant goes back from the end node to the initial node, reinforcing
the edges of that path.

• Overall
In this technique, the reinforcement of the trail starts when an ant finds a whole
path. Then, the whole path is reinforced in one iteration.

• Selective
In this technique, the reinforcement of the trail occurs only in a certain subset of
the paths. This subset is defined under some conditions respecting to the best path.
Some examples are the best path of a given iteration, the current best path, the
paths with a cost into a pre-defined threshold, and others.

The Progressive technique is the most intuitive way of upgrading pheromones. However,
this strategy causes the reinforcement of paths not yet found, which could later produce
inappropriate effects as the reinforcement of not optimal paths. For this reason, a good
method to counteract this problem is the reinforcement of the whole path. There are
two options of the whole path reinforcement: the Backward and Overall techniques. In
Backward technique, after finding a whole path, an ant goes back to the initial position,
reinforcing the path one edge at a time. This way of taking the whole path allows us to
take information about the accuracy of the path. This information can be used to reinforce
the path proportionally to the quality of the solution. In that way, these features make
this technique depend on the length of the path. However, the algorithm will spend much
time if the path is too long (which happens in the first stages). To reduce this problem, we
can, after reaching the end node, immediately reinforce the whole path instead of doing it
in a series of steps. In other words, we can apply a Overall technique, which allows us to
reduce the execution time and maintain some advantages such as the knowledge of the path
quality. However, this technique introduces other problems related to transition periods
of the ants. The transition periods are leveled, producing a more static reinforcement.
In this way, the ants will be affected by pheromones later than if they would be using a
time list. In other words, the pheromone updating will be static, and consequently, the
probability of selection of given edges will be late. Finally, the Selective technique can be
used when all the above techniques return no satisfactory results. This technique focuses
on reinforcing a subset of paths. Some options of subsets are:

• Reinforce the m
2 best path in a given iteration.

• Reinforce the best path in a given iteration.

• Reinforce those paths that are better than the best path in a given iteration.

• Reinforce the best paths which have a cost into a pre-defined threshold.

This technique helps us to reduce the convergence time because the solutions are cen-
tered in a specific case. However, in some cases, this quick convergence could produce a
high error range between the solution and the optimal solution. It is because the space of
searching for the new path is reduced.

Information Technology Engineer 14 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

The above consideration illustrates the difficulties of adjusting a technique for pheromone
reinforcement, which matches the conditions of a specific problem. In that way, it is nec-
essary to perform an early stage where we can examine and experiment for finding the
techniques which adjust in a better way to our problem. Moreover, it is important to
use a variable reinforcing policy in initial iterations, which can reduce finding sub-optimal
solutions. Another consideration is to control the transitions periods (not let them be too
long), which can produce an unnecessary prolongation of the algorithm. The Table 2.1
summarize the behavior, the advantages and disadvantages of each reinforcement tech-
nique.

Technique Behavior Advantages Disadvantages
Progressive Reinforce on moving

from one node to an-
other node.

-Intuitive implementa-
tion.
-Close to real behavior.

-Reinforcement of
paths not yet found.
-Reinforcement of not
optimal paths.

Backward Reinforce on a whole
path and backpropaga-
tion of pheromones.

-Take information on
the quality of the path
solution.
-Reinforce proportion-
ally to the quality of
the solution.

-Spent additional time
on long paths.

Overall Reinforce on a whole
path in one iteration.

-Take information on
the quality of the path
solution.
-Reinforce proportion-
ally to the quality of
the solution.
-Transition periods are
leveled.

-Spent additional time
on long paths, but less
than the Backward
technique.
-The effect of
pheromone rein-
forcement appears less
quickly.

Selective Reinforce on a certain
subset of the paths

-Reduce the conver-
gence time.
-Specific purpose tech-
nique, and adjustable
to the problem condi-
tions.

-Produce a high error
range.
-Reduce the searching
space.

Table 2.1: Reinforcement Techniques

Information Technology Engineer 15 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Updating Factor (∆τ)

The control of deposited pheromones ∆τ is also very essential because it directly affects
the decisions made by the ants. If we choose a better ∆τ , the algorithm will converge
quicker, and the probability of avoiding invalid results will be higher. The Equation 2.9
shows some possible ways of defining ∆τ will be deposited on a found path.

∆τ = const (2.9a)

∆τ = 1
cp

(2.9b)

∆τ = Q

cp
(2.9c)

∆τ = cbest
cp

(2.9d)

where Q = max
eij∈E

cij is the maximum cost cij of the edges eij ∈ E, P denotes the path
found by an ant, cp = ∑

eij∈P
cij is its total cost, and cbest is the total cost of the best path

found so far. In Equation 2.9d, the ∆τ values is given by the ratio between the length of a
path and the length of the shortest path found so far. In this sense, the pheromone value
τij is reinforced using Equation 2.10.

τij(k + 1) = τij(k) + ∆τ (2.10)

where k is the current state, k + 1 is the new state.

2.2.5 Pheromone Evaporation
The evaporation technique is an intuitive process that consists in multiplying a value by
the pheromone value of an edge. This behavior is represented by the Equation 2.11.

τij(k + 1) = τij(k) · (1− ρ) (2.11)

where ρ is the evaporation factor, τij is the pheromone value on the edge eij, and k is
the current state.

Besides, it could add some bounds to the pheromone values. In that way, if the new
pheromone value is lower than the minimum value, the new value is set to τmin. Moreover,
if the new pheromone value is greater than the maximum value, the new value is set to
τmax. The mechanism works in the same way like a MAX-MIN Ant System (MMAS) [36],
[37].

τij(k + 1) =

τmin if τij(k) · (1− ρ) < τmin

τij(k) · (1− ρ) otherwise
(2.12)

Information Technology Engineer 16 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

where ρ is the evaporation parameter which states evaporation speed, τij is the pheromone
value on the edge eij, and k is the current state.

The above considerations shows that the evaporation has an easy implementation.
However, the selection of frequency of evaporation implies a more difficult decision. We
have to consider the actions of a single ant or the whole colony to choose the moment of
pheromone evaporation. In that way, the following instances can be established [25]:
• Evaporation after the step of an ant.

• Evaporation after the step of all ants.

• Evaporation after finding a path by ant

• Evaporation after finding paths by all ants.

• Evaporation after a time change.

• Evaporation per time unit.
In this stage, it essential to consider an evaporation instance that adjusts to our problem

condition and the method for finding paths, Section 2.2.2. In this way, the instances 1 can
be applied with both methods of Section 2.2.2. Then, instances 2, 3, and 4 can be applied
with the step by step method. Finally, instances 5 and 6 can be applied with a time list
method. Moreover, it essential to adjust the parameter ρ because it establishes the speed of
evaporation. If this value is too high, the algorithm can converge to non-optimal solutions.
On another hand, if this value is too low, the algorithm will not converge.

2.2.6 Algorithm Ending
Previously it was mentioned that the ACO is a metaheuristic technique. In this way, it is
not necessary to guarantee finding the optimal solution, but a good solution. This feature
allows us to establish the ending of the algorithm under some factors and conditions.
Thus, the algorithm can be stopped in three ways [25]: convergence, percentage, and time
or iteration limit.
• The convergence occurs when all the ants follow the same path. In other words,

this situation happens when there is a high concentration of pheromones on a path
such that the next iterations do not generate significant changes.

• The choice of ants percentage is related to the convergence. When there is a con-
siderable size population of ants, the convergence could take much time. Therefore,
it can choose a percentage that defines how many ants must converge to stop the
algorithm. This action will reduce the convergence time.

• The time or iteration limit is the most frequently used action because it estab-
lishes a boundary that promotes good experimentation. The algorithm stops when it
reaches the threshold. This technique helps us to avoid unnecessary infinite repetition
of the procedure.

In practice, the best way to proceed is to establish stability between the three methods.
This stability is achieved by analyzing the credibility of the results and experimenting.

Information Technology Engineer 17 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer 18 Final Grade Project

Chapter 3

State of the Art

In this chapter, we presented some main methods used for solving the path planning prob-
lem based on graphs or easily adapted to graphs. Figure 3.1 shows a conceptual map with
a brief categorization of the main topics found in this research part. Furthermore, we did
a brief description of each method. In some cases, we did a further explanation with some
additional information. These techniques were used in the experimental stage for compar-
ing the performance of our final proposal. These best-explained methods are Dijkstra, A*
Search, and Genetic algorithms.

Path Planning Based on
Graphs

Exact Algorithms

Dijkstra's Algorithm

A* Search Algorithm

Comprehensive Search
Algorithms

Breadth-First Search

Depth-First Search

Metaheuristic Algorithms

Genetic Algorithms

Ant Colony Optimization

Artificial Intelligence
Algorithms

Reinforcement Learning -
LRTA*

Hybrids

Ant Colony Optimization
- Genetic

Ant Colony Optimization
- Geometric Analysis

Genetic - Artificial
Intelligence

Figure 3.1: State of Art: Path Planning Algorithms based on Graphs

3.1 Exact or Complete Algorithms
The principal characteristic of these algorithms is the finding of the optimal solution of the
path planning problem in a finite computational time.

19

School of Mathematical and Computational Sciences YACHAY TECH

3.1.1 Dijkstra Algorithm
Edsger W. Dijkstra presented this algorithm in 1959 [38]. The Dijkstra Algorithm works
on undirected or directed graphs with nonnegative weights [39], [38]. It is essential to
consider that this algorithm solves the single-source shortest path problem; in other words,
it finds the shortest paths from a given node source to the rest of the nodes. As such,
the algorithm explores the nodes, storing their accumulated distance, and marked some
already analyzed nodes. In order to store the paths, this version establishes a structure,
called Tag, that stores the information of an analyzed node. The following parts compose
the Tag:

• Visited: a boolean value which indicates if a node already been visited totally. In
other words, if the node has analyzed all these possible neighbor nodes.

• Goal distance g(n): this field stores the accumulated distance of the node.

• Parent: this field indicates which is the parent node of the current node.

D

4,A

g(n) parent

visited not visited

Figure 3.2: A* Tag Information

Procedure:

1. Initialize a list of x Tags with the information of each node. This list can be re-
placed by a priority queue structure for reducing the computational complexity. The
information of the Tags is marked with the following information:

• visited = false

• goal distance = Infinity

• parent = null

The source node is marked with a goal distance = 0 because the distance from
the source to the source is 0.

2. Take the current node as the node with the least goal distance g(n) and not visited.
In the beginning, this node is the source node.

3. Take the neighbor nodes of the current node and iterate over them if they are not
marked as visited. For each not visited neighbor, calculate the tentative distance
gk+1(n′) and assign it following the Equation 3.1.

gk+1(n′) = g(n) + d(n, n′) if g(n) + d(n, n′) < gk(n′) (3.1)

Information Technology Engineer 20 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

where n′ is the neighbor node, n is the current node, gk+1 is the tentative distance or
the goal distance in step k+ 1, g is the goal distance, d(n, n′) is the distance between
the current and neighbor node. Moreover, if the condition of Eq. 3.1 is met mark
the parent node of neighbor node with the current node n.

4. Mark the current node as visited.

5. Repeat steps 2, 3, and 4 until all the nodes are marked as visited. Finally, the
best-found distances are stored in the variable of the goal distance g(n).

6. Reconstruct the route taking the final node and applying a backtracking process
using the parent node information.

In Fig. 3.3, an example of the Dijkstra algorithm is illustrated. Besides, in Fig. 3.2,
the components of the tag are shown for understanding the process.

A B

ED

C

8,4,4,A

7,2,5,A

�,�,0,_

5,0,5,_ 5,3,2,A

2

1

4

3

4

2

A B

ED

C

7,2,5,A

5,5,0,B

5,0,5,_

2

1

4

3

4

2

8,4,4,A

5,3,2,A

A B

ED

C

7,2,5,A

5,5,0,B

5,0,5,_

2

1

4

3

4

2

8,4,4,A

5,3,2,A

A B

ED

C

7,2,5,A

5,5,0,B

5,0,5,_

2

1

4

3

4

2

8,4,4,A

5,3,2,A

7,3,4,C

A B

ED

C

7,2,5,A

5,5,0,B

2

1

4

3

4

2

5,3,2,A

7,3,4,C

5,0,5,_

Figure 3.3: Dijkstra Algorithm Process

Information Technology Engineer 21 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Pseudocode Dijkstra Algorithm

Input: G(N,E), vs (source node)
Output: P (path)
Main:

tags list = InitTagsList()
while (!all nodes visited)
| n = SelectNotVisitedLeastNode(tags list)
| neighbors = SelectNotVisitedNeighbors(n)
| for (n′ in neighbors)
| | if (g(n) + d(n, n′) < g(n′))
| | | g(n′) = g(n) + d(n, n′)
| | | parent(n′) = n
| | end
| end
| visited(n) = true
end
P = BackTracking(final node)

3.1.2 A* Search Algorithm
The A* algorithm is a best-first search algorithm which is based on the Dijkstra algorithm.
However, A* uses a preprocessing heuristic measure of each node. It evaluates nodes using
g(n), the cost to reach the node, and h(n), the cost to get from node to the target [3].

f(n) = g(n) + h(n)

Therefore, the f(n) value estimated cost of the cheapest solution through n. In that way,
instead of take the least g(n) as in Dijkstra Algorithm, the A* algorithm selects the least
value of f(n) in the tags list. In order to store the f(n) and h(n) values, this algorithm
needs extra variables by each Tag. In that way, the following parts compose the Tag:

• Visited: a boolean value which indicates if a node already been visited totally. In
other words, if the node has analyzed all these possible neighbor nodes.

• Global Goal f(n): this field stores the global accumulation of the node.

• Local Goal g(n): this field stores the accumulated distance of the node.

• Heuristic measure h(n): this field stores the precalculated heuristic measure.

• Parent: this field indicates which is the parent node of the current node.

Besides, in order to find the optimal solution, the heuristic measure must be admissible
and consistent [3]. A admissible heuristic is one that never overestimates the cost to reach
the goal. On the other hand, a heuristic is consistent if, for every node n and every
successor n′ of n generated by any action a, the estimated cost of reaching the goal from

Information Technology Engineer 22 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

n is no higher than the step cost of getting to n′ plus the estimated cost of reaching the
goal from n′:

h(n) ≤ c(n, a, n′) + h(n′)

Some admissible and consistent heuristic are straight-line distance, and proximity,
Equation 4.1.

D

8,4,4,A

parent

visited

h(n)f(n) g(n)

not visited

Figure 3.4: A* Tag Information

Procedure:

1. Initialize a list of x Tags with the information of each node. This list can be replaced
by a priority queue structure for reducing the computational complexity. In the
beginning, the information of the Tags is marked with the following information:

• visited = false

• global goal = Infinity

• local goal = Infinity

• heuristic measure = h(n) (precalculated)

• parent = null

The source node is marked with a local goal = 0 because the distance from the
source to the source is 0, and a global goal = h(n).

2. Take the current node as the node with the least f(n) value and not visited. In the
beginning, this node is the source node.

3. Take the neighbor nodes of the current node and iterate over them if they are not
marked as visited. For each not visited neighbor, calculate the tentative distance
gk+1(n′) and assign it following this condition:

gk+1(n′) = g(n) + d(n, n′) if g(n) + d(n, n′) < gk(n′) (3.2)

where n′ is the neighbor node, n is the current node, gk+1 is the tentative distance,
g is the local goal, d(n, n′) is the distance between the current and neighbor node.
Moreover, if the condition of Eq. 3.2 is met mark the parent node of the neighbor
node with the current node n and set the global goal to:

f(n′) = g(n′) + h(n′)

Information Technology Engineer 23 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

4. Mark the current node as visited.

5. Repeat steps 2, 3, and 4 until all the nodes are marked as visited. Finally, the
best-found distances are stored in the variable of the local goal g(n).

6. Reconstruct the route taking the final node and applying a backtracking process
using the parent node information.

In Fig. 3.5, an example of the A* Search algorithm is illustrated. Besides, in Fig. 3.4,
the components of the tag are shown for understanding the process.

A B

ED

C

8,4,4,A

7,2,5,A

�,�,0,_

5,0,5,_ 5,3,2,A

2

1

4

3

4

2

A B

ED

C

7,2,5,A

5,5,0,B

5,0,5,_

2

1

4

3

4

2

8,4,4,A

5,3,2,A

A B

ED

C

7,2,5,A

5,5,0,B

5,0,5,_

2

1

4

3

4

2

8,4,4,A

5,3,2,A

A B

ED

C

7,2,5,A

5,5,0,B

5,0,5,_

2

1

4

3

4

2

8,4,4,A

5,3,2,A

7,3,4,C

A B

ED

C

7,2,5,A

5,5,0,B

2

1

4

3

4

2

5,3,2,A

7,3,4,C

5,0,5,_

Figure 3.5: A* Search Algorithm Process

Information Technology Engineer 24 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Pseudocode A* Search Algorithm

Input: G(N,E), vs (source node), h(n) (precalculated heuristic)
Output: P (path)
Main:

tags list = InitTagsList(h(n))
while (!all nodes visited)
| n = SelectNotVisitedLeastNode(tags list)
| neighbors = SelectNotVisitedNeighbors(n)
| for (n′ in neighbors)
| | if (g(n) + d(n, n′) < g(n′))
| | | dt(n′) = g(n) + d(n, n′)
| | | parent(n′) = n
| | | f(n′) = g(n′) + h(n′)
| | end
| end
| visited(n) = true
end
P = BackTracking(final node)

3.2 Comprehensive Search Algorithms
The principal characteristic of these algorithms is a exhaustive search of the graph for
finding the solution of the path planning problem.

3.2.1 Breadth-First Search
The following explanation was based on [1]. The Breadth-First Search belongs to a class
of uninformed graph search algorithms. It first explores the nodes that are close to the
starting node. In other words, this algorithm prefers to analyze all the nodes that can be
accessed in k steps, instead of k + 1 steps.

Figure 3.6: Breadth-First Search Algorithm Process. Retrieved from [1]

The algorithm implements an open and closed list. In Fig. 3.6, the arrow marks the
current explored node, the gray nodes are in the open list, and the black nodes are in
the closed list. In the open list Q, the nodes are sorted using a FIFO method (First-In
First-Out). The newly opened nodes are added to the end of the list Q, and the nodes for

Information Technology Engineer 25 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

continuing the search are taken from the beginning of the list Q. The algorithm is complete
because it finds a solution if it exists. Nevertheless, the technique generally is high memory
and time consuming; both features increase exponentially as graph branching progresses.

3.2.2 Depth-First Search
The following explanation was based on [1]. The Depth-First Search is a non-informed
graph search algorithm where the nodes are extended by depth. First, it explores the
nodes that are farthest away from the starting node. Thus, the search continues in depth
until the current node has no further successors. The search is then continued with the
next deepest node whose successors have not been explored yet, as shown in Fig. 3.7.

Figure 3.7: Depth-First Search Algorithm Process. Retrieved from [1]

The algorithm also implements an open list of Q, which is sorted by the LIFO method
(Last-In First-Out). Thus, the newly opened nodes are added to the beginning of the list
Q. Besides, the nodes for continuing the search are also taken from the beginning of the
list Q. The algorithm is not complete; even it can get stuck if it falls in a cycle. For this
reason, it can be limited to a certain depth in some cases. This algorithm has a high time
consuming, but a low memory usage. This advantage is because when some nodes and
all their successor are completely explored, these nodes no longer need to be stored in the
memory.

Information Technology Engineer 26 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

3.3 Metaheuristics Algorithms
The principal characteristic of these algorithms is the finding of feasible solutions to the
path planning problem, not necessarily the optimal solution, just a good solution.

3.3.1 Genetic Algorithm
A genetic algorithm seeks to solve the path planning problem using individuals that evolve,
improving its features over time. The algorithm implements some particular functions:
Random Population Generation, Fitness, Mutation, and Crossover. These functions help
us to guarantee to find a solution. For purposes of comparison, the present work imple-
ments an already implemented version [2], [5] with some changes for adjusting with our
environment representation.

Procedure:

1. Define the principal parameters of the algorithm:

• φc: stop condition, percentage of same individuals.
• ni: number of individuals or population size.
• ρs: probability of survivals.
• ρm: probability of mutations.
• ωe: coefficient of obstacle edges.
• ωn: coefficient of obstacle nodes.

2. Create an initial random population of ni individuals

3. Measure the fitness of each individual of the current population.

4. Take the survivors, individuals with the best fitness, according to ρs.

5. Apply a crossover between survivors, which generates new individuals. In this step,
the population size must not exceed the ni individuals.

6. Apply the Genetic Operators to the new individual: Mutation, Node Repair, Line
Repair, Deletion, and Improve.

7. Repeat steps 3, 4, 5, 6, until reach a percentage of φc of the same individuals.

Individual
In this algorithm, an individual is encoded as a path, which is a sequence of nodes. This
sequence starts with the initial node and ends with the final node. A path can be either
feasible (collision-free) or infeasible. A path is infeasible if its intermediate nodes fall on
any of the states with obstacles.

Random Initial Population

Information Technology Engineer 27 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

The algorithm creates a random initial population generating some random nodes (not
necessarily linked) between the initial and final positions. Then, a procedure links all
the nodes of this pseudo route implementing a process that considers the best proximity
measure 4.1. This process is similar to the Random Walk 2, Section 4.2, which will be
explained later.

Fitness Function
The algorithm uses fitness function over the individuals of a generation. This function
considers the nodes and edges, which can be obstacles in infeasible paths. Therefore, if the
road is infeasible, the fitness function value will be few, Equation 3.3a.

Fcost =
N∑
i=1

(di + βi ∗ ωe) + len(On) ∗ ωn (3.3a)

βi =

di if i ∈ Oe

0 otherwise
(3.3b)

where N is the number of edges, di is the distance of an edge, On is the set of obstacle
nodes in the current path, Oe is the set of obstacle edges in the current path, ωe is the cost
factor of obstacle edges, and ωn is the cost factor of obstacle nodes.

Crossover
The crossover procedure takes two paths of the best individuals (survivors) and joins them
following a pre-defined criteria, Fig. 3.8. First, the algorithm fragments both paths in
a random middle point. Then, a process selects the first fragment of path one and the
second fragment of path two and tries to join them. Commonly these parts are unlinked,
so the algorithm connects them using the best proximity measure for select the next nodes.

Genetic Operators

• Mutation: the mutation operator selects a node of the path randomly and changes
it by another random node. If the new path is unlinked, their nodes are joined
following the best proximity criteria.

• Node repair: the node repair operator works only in infeasible paths. This operator
selects an obstacle node of the path randomly, and change it by a feasible node if it
is possible, Fig. 3.8.

• Line repair: the node repair operator works only in infeasible paths with edges
obstacles. This operator selects an edge obstacle randomly and changes it by a
connection with a feasible node if it is possible, Fig. 3.8.

• Deletion: the deletion operator works in both feasible and infeasible paths. This
operator selects a node of the path randomly. If the deletion of this node increases
the fitness, the process deletes the node.

Information Technology Engineer 28 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• Improve: the improve operator works only with feasible paths. This operator selects
a node randomly, and change it with another feasible close node. If the fitness of this
new path increases, the change is conserved.

Some of these operators can not work with our environment representation (graph
representation) because each node has at most four possible connections. Therefore, if we
tried to replace some of the nodes of the path, we can get unlinked routes. In the present
work, we compare our ACO version with a Genetic version, which only uses a Mutation
and Improve operator. These operators fit with our graph representation and are enough
to generate good results.

Figure 3.8: Genetic Operators. Retrieved from [2]

Information Technology Engineer 29 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Pseudocode Genetic Algorithm

Input: φc, ni, ρs, ρm, ωe, ωn
Output: P (path)
Main:

population = CreateRandomPopulation(ni,)
while (!stop condition(φc))
| MeasureFitness(population, ωe, ωn)
| survivors = GetBestIndividuals(population,ρs)
| population = survivors
| while(population.len < ni)
| | parent1 = GetRandomParent(survivors)
| | parent2 = GetRandomParent(survivors)
| | child = Crossover(parent1, parent2)
| | Mutation(child, ρm)
| | NodeRepair(child)
| | LineRepair(child)
| | Deletion(child)
| | Improve(child)
| | population.Add(child)
| end
end
P = SelectBestIndividual(population)

3.4 Artificial Intelligence Algorithms

3.4.1 Reinforcement Learning - LRTA*
The following explanation is based on the following articles [40] [41] and [3]. The Learning
Real-Time A* algorithm, also known as LRTA*, was introduced by Korf in 1990 [40]. It is
the first and best known learning real-time heuristic search algorithm or online local search
algorithm. The aim focuses on the balance between acting and improving the heuristic
estimations. As well as the A* algorithm, this method implements an estimated heuristic
h(n), which denotes the cost to get from the node to the target and the precisely known
value g(n), which denotes the cost to reach the node. The algorithm then goes through the
states with lowest f(n) = g(n) + h(n), just like in A* search algorithm. Nevertheless, the
LRTA* adds another process that allows it to look ahead, updating the estimated heuristic
values.

The algorithm consists in to store a “current best estimate” H(n) of the cost to reach
the goal from each state that has been visited. H(n) starts out being just the heuristic
estimate h(n) and is updated as the algorithm gains experience in the graph space. The
algorithm therefore is guide by the nodes with the least f(n) = g(n)+H(n), instead of the
previous f(n). In this way, the H(n) is updated to C(n, a, n′)+H(n′) only if the minimum
calculated value f(n′) is greater than the H(n). Thus, in the worst case, this algorithm

Information Technology Engineer 30 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

explores the environment in O(n2). Figure 3.9 illustrates the algorithm process in a better
way.

Figure 3.9: LRTA* Search Algorithm Process. Retrieved from [3]

Fig. 3.9 shows a one-dimensional graph space where each node is labeled with H(n),
and the edges are labeled with the step cost. The idea is moving from left to right. In
this sense, in Fig. 3.9(a), the algorithm seems to be stuck in a flat local minimum at
the shaded state. In the example, there are two actions, with estimated costs of 1 + 9
and 1 + 2, so it seems best to move right. Now, it is clear that the cost estimate of 2
for the shaded state was overly optimistic, so the H(n) should be updated to 3 following
H(n) = C(n, a, n′) + H(n′) = 1 + 2, Fig. 3.9(b). The updated H(n) are circled, and
the current state is colored with a gray color in Fig. 3.9. By continuing this process, the
algorithm will move back and forth twice more, updating H(n) each time and “flattening
out” the local minimum until it escapes to the right.

Information Technology Engineer 31 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer 32 Final Grade Project

Chapter 4

Methodology

This chapter presents the procedures implemented to reach the objectives, together with
a justification for their use. In that way, this chapter starts with an explanation of the
chronological phases for problem resolution. Then, we present the model proposal, which
includes the ACO equations and parameters, the global and local interactions, and the
features implemented in the three-dimensional simulation. Finally, we describe the data
sets and the methods for analyzing the results.

4.1 Phases of Problem Solving
The following diagram shows the work-flow which had been taken to perform this project.

Problem Description Problem Analysis Algorithm Design Implementation Testing

Problem
Definition

Work-Flow
Definition

Literature
Review

State of the Art

Model Proposal
Definition

Software
Specification

Basic ACO
Algorithm

Codification
Environment
Configuration

Data Generation
Methods

Analysis
Methods

Visualization

Adaptive ACO
Algorithm

Desgin of Extra
Algorithms

Figure 4.1: Phases of Problem Solving.

4.1.1 Description of the Problem
This phase acts as the base of the project development because it presents the main topic,
its possible problems, and how to deal with it. In this way, in the first steps, we raise
planted the essential meaning of path planning and its general features. Then, we detected
some possible problems and decided what problem to address. Later, we defined a brief

33

School of Mathematical and Computational Sciences YACHAY TECH

model proposal to deal with this problem. To this end, we also defined a workflow to design
and develop the model proposal, Fig. 4.1. In this case, we decide to use an incremental
technique to design and codify the algorithms progressively. This style helped to detect
possible bugs easily. The Chapters 1 and 4 consolidate the steps mentioned in this phase.

4.1.2 Analysis of the Problem
This phase consists of the background and fundamental knowledge to understand in a
better way the present project. Chapter 2 presents this information in a systematic and
ordered way where we started analyzing the path planning problem, and then we deal with
the Ant Colony Optimization. In this sense, we focused on the path planning problem one
to one based on graphs. Besides, this information was useful to describe a brief State of the
Art, Fig. 3.1. According to this background, we defined a more conscious model proposal,
where we describe the local and global interactions, as well as the simulation features, its
extensions, and prerequisites. Finally, it was determined the software specifications for the
simulation that are Unity 3D for visualization and C# for algorithm codification. The
Chapters 2 and 4 consolidate the information mentioned in this phase.

4.1.3 Algorithm Design
In this phase, it was designed the different alternatives of the model proposal. These
algorithms are a basic ACO algorithm, the ACO variants which considers local and global
interactions, the Dijkstra algorithm, the A* algorithm, and the Genetic algorithm. These
algorithms are explained in the Chapter 3 and Section 4.2.

4.1.4 Implementation
This phase consists of the codification in a specific programming language and the visu-
alization in a specific framework. For the visualization, we took the Unity 3D framework
because it has already implemented physical dynamics that help in the creation and mov-
ing of objects. For the algorithm, we decided to use the C# programming language for
avoiding compatibility errors with the visualization. It is because Unity 3D uses C# as its
principal programming language. However, some initial prototypes were made in Python
because it is a language that allows detecting errors quickly.

4.1.5 Testing
This phase focuses on measuring and analyzing the performance of the ACO algorithm. It
is achieved by comparing the basic results with the addition of local and global interactions,
and with other implementations. For this reason, it was necessary to establish some criteria
for each variant can have similar initial conditions before the analysis. Then, we have
to establish how to generate the data for the experimentation. Finally, the results was
evaluated using some techniques for getting information about its performance. All these
steps are detailed in the Section 4.3.

Information Technology Engineer 34 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

4.2 Model Proposal
The proposal model pretends to deal with a path planning problem one to one. To this end,
we selected a standard environment representation of graphs that also can quickly adapt to
other representations such as cell decomposition or road maps. In this sense, this project
proposes a computational model based on global and local interactions and some principles
of the literature review. In order to design and develop this model, we use an incremental
style. In this way, the first step was to define the environment where the algorithm will take
place. Then, we developed a basic version of the ACO algorithm, which is used as a base
algorithm. Later, in order to produce a better performance, we established some global
and local interactions which generate different versions of the ACO algorithm. Finally, we
consider the best ACO variants, to develop a three-dimensional graphical simulation. In
this part, additionally, we add another heuristic, which confers a notion of height to the
simulation.

4.2.1 General Mesh Environment
The mesh environment was represented by an undirected weighted graph G(N,E), where
N is the set of nodes ni, and E is the set of edges eij. We take the nodes of this graph from
Wavefront .obj files, which allows simulating almost real environments. These environments
have several characteristics which list below:

• The nodes of the graph connect with their neighbors in four directions: north, south,
west, and east.

• The nodes stores information about their neighbors to faster access.

• The nodes are uniformly distributed in two-dimensional scenarios and with intrusions
and extrusions in three-dimensional scenarios, Fig. 4.14.

• The nodes can store the value 1
dit

, the list Hi of proximity values νij, and the list Si
of slopes values sij.

• The edges can store several heuristic measures: distance dij, pheromone τij, and
necrophoresis value κij.

• The ants can only move between nodes, through the four possible edges.

• A completed path is a set of node C = n0, n1, ..., ni, ..., nk.

Proximity

In this project, we proposed the use of another heuristic instead of the distance, know
as proximity. This measure indicates how distant is the node nj to the target node nt,
regardless of the obstacles present, Equation. 4.1.

ν(ni, nj) = dit ·
1
djt

(4.1)

Information Technology Engineer 35 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

where ni is the current node, nj is the neighbor node, nt is the target node, dit is the
relative euclidean distance from the current node ni to the target node nt, and djt is the
relative euclidean distance from the current node nj to the target node nt. In this way, if
the value of ν(ni, nj) is high, the node nj is close to the target node.

An obvious thing could be that we could use the value 1
djt

over each node, and we can
have the same behavior. However, according to the position of the node, the value 1

djt
can

vary on a large scale. For this reason, the normalization step of multiply by dit is essential
to reduce the variability. This technique allows reducing the values to an approximated
interval between (0, 3].

dit

djt

nj

nt

current node target nodeneighbor nodes

ni

Figure 4.2: Proximity

One limitation of this heuristic is that it must be calculated several times. Each node
have a list of four proximity values Hi. This effect is produced because ν(ni, nj) 6= ν(nj, ni),
Fig. 4.2. Despite this limitation, these values can be stored in preprocessing time.

The fundamental to propose this heuristic is that the use of the distance dij between
nodes is not useful enough for finding a feasible path using the ACO algorithm. The
environment configuration provokes that the dij values are almost the same in each step.
Therefore, if we use only the distance in the early stages of the ACO algorithm, we can get
similar probabilities. This fact can provoke a high randomness behavior that can increment
the convergence time or even not produce it. In this sense, the proximity measure can
achieve behavior that disgorges in a convergence. Besides, another feature of this heuristic
is that it can be applied to an environment with more connected nodes. For example, a
node that is connected with eight nodes.

4.2.2 Basic ACO algorithm - ACOv0
This algorithm implements the fundamental principles of the ACO algorithm. In this sense,
the algorithm is only able to work in an environment with few obstacles or no one. This
algorithm served as a base to include new interactions that allow a more adaptive behavior.
The parameters used in this algorithm are the following:

1. Main Parameters

• φc: convergence percentage. This parameter defines the stop conditions of ants.
In other words, if φc percentage of the ants are following a route, then the
algorithm stops.

Information Technology Engineer 36 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

• A: number of ants per episode.
• α: a parameter that defines the influence of pheromones on the choice of the

next node.
• β: a parameter that defines the influence of another heuristic measure on the

choice of the next node.
• τ0: a parameter that defines the initial amount of pheromones per edge.
• ρ: a parameter that defines the evaporation speed of the pheromones on the

environment. It takes values between the interval [0, 1]. It could be strong
ρstrong or light ρlight, depending on reinforcement and evaporation technique.
• δ: a parameter that defines the initial iterations of the pseudo-random generator.

Furthermore, in this basic version, the algorithm checks previous positions to guar-
antee the convergence. This interaction avoids that an ant can visit previous or already
visited positions. However, this condition provokes that the ants get stuck in some cases.

Procedure:

1. Initialize the environment, parameters, and colony of ants.

2. One ant of the colony tries to find a route to the final node using a Movement Choice
dynamic, Eq. 4.2.

(a) By checking previous positions, the ant could get stuck in some situations,
and not find a route.

3. If the ant finds a route, a reinforcement over the environment takes place, using Eq.
4.3.

4. Repeat steps 2 and 3 until complete an episode. An episode occurs when all the ants
have tried to find a route.

5. After each episode, an evaporation step occurs if at least one ant of the colony found
a route or if the ants get stuck several times with the same last node. In this step,
the Equation 4.5 is used.

6. The algorithm continues until the most ants can get the same route. The converge
percentage of φc defines this stop condition.

The principal points of this ACO version are Movement Choice, the Reinforcement
Pheromone, and the Evaporation Pheromone. The explanation of each one of these meth-
ods, implemented in this basic version, is below.

Information Technology Engineer 37 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Movement Choice

Let the current node ni; there are a previous nodes checking condition and a probability
choice for selecting the next node.

1. Checking Previous Nodes Interaction Let N the set of all the next possible nodes
nj, where #N ∈ [2, 4] due to the connections of the graph. If nj is already visited ⇒
N = N − {j}.

2. Probability Choice. This simulation proposed an algorithm which can have a quick
response. In that way, we decided to work with the classical implementation of Edge Co-
efficient, which uses powers with pre-defined parameters, Equation 2.5a. Moreover, using
the classical implementation, it is easy to add the additional heuristic criteria: proximity
and slope equation. Furthermore, for the initial randomness, it is necessary to implement
a pseudo-random generator rij in the early stages of the algorithm to guarantee an
accurate convergence.

In this sense, let N , the set of the possible next nodes nj. The probability of each node
nj is measured with the Equation 4.2.

pkij = rij∑
l∈N ril

(4.2a)

where rij is:

rij =

q′ij if episode < δ or τij = τ0

qij otherwise
(4.2b)

, and

qij = ταij · ν
β
ij (4.2c)

q′ij = ναij ·
1
dij

β

(4.2d)

where pkij is the probability that the ant k moves from node ni to node nj. Then, we
get a random number rn uniformly distributed between [0, 1], where 1 is the accumulative
probability of all the next possible nodes. Finally, we accumulate each probability of node
nj until the sum is greater or equal to rn. We stop and selected that node nj. In that way,
the nodes with more probability have more opportunity of being selected.

Pheromone Reinforcement

In this work, the overall technique for pheromone reinforcement was chosen by the large
size of the environments. In the experimental stage, this complexity can provoke problems
in the response of ants to the pheromones and time of convergence. The chosen technique
can deal with this kind of problem, leveling the transition periods of the ants. Moreover,

Information Technology Engineer 38 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

this technique allow to take information about the quality of the solution in each step.
This information will be useful for defining the updating factor ∆τ , Equation. 4.4.

In this sense, let the set P , which stores the nodes of a specific path. The pheromone
reinforcement equation is represented in Equation 4.3.

τij(k + 1) = τij(k) + ∆τ (4.3)

where k is the current state, and

∆τ = cbest
cp

(4.4)

where cp = ∑
eij∈P

cij is its total cost of path P , cbest is the total cost of the best path

found so far.

The overall technique evaluates the Equation 4.3 each time that an ant finds a path.
The update process is performed only in the pheromones values, which correspond to the
current route.

Pheromone Evaporation

The evaporation technique uses the ρ parameter to control the number of pheromones per
edge. Moreover, we decided to use intense evaporation after each episode.

In this sense, let the pheromone value τij, the evaporation equation is given by the
equation:

τij(k + 1) = τij(k) · (1− ρ) (4.5)

where k is the current state of τij.

Pseudocode Basic ACO Algorithm

Input: G(N,E), φc, A, α, β, τ0, ρ, δ
Output: P (path)
Main:

colony = CreateColonyAnts(A)
while (!stop condition(φc, colony))
| for (ant in colony)
| | route = TryFindRoute(ant)
| | if (route != null)
| | | child = Reinforcement(G(N,E),route)
| | | CheckAndSetBestRoute(route)
| | end
| end
| if (CheckAntsFindSolutionsOrSeveralStucks(colony))

Information Technology Engineer 39 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

| | Evaporation(G(N,E))
| end
end
P = SelectConvergencePath(colony)

Some researchers [25] [42] show that the algorithm works fine in an environment with
fewer states or nodes, but it has more unusual behaviors with many states. Therefore, for
broader environments, it is necessary to establish some interactions to guarantee a better
performance of the algorithm.

4.2.3 Global Interactions - Random Walks
The following proposes adds global interactions to the standard algorithm, known as Ran-
dom Walks. The aim of these techniques is reducing the convergence time of the algorithm.
To this end, a random walk helps to initialize the pheromone values of edges with ran-
dom values for reducing the convergence time of the ACO algorithm. In this way, the
random walk can be seen as a preprocessing technique, which allows estimating randomly
good pheromone values. Moreover, the addition of these random walk confers the ini-
tial randomness of the algorithm. For this reason, it is not necessary to implement the
pseudo-random generator technique, and the Equation 4.2 is reduced to Equation 4.6.

pkij = qij∑
l∈N qil

(4.6a)

where qij is:

qij = ταij · ν
β
ij (4.6b)

The evaporation and reinforcement techniques are equal to ACOv0 which follows the
Equations 4.3, and 4.5. In this work, we proposed two different criteria for the random
walk: Proximity Random Walk and Semi-Proximity Random Walk.

1. Proximity Random Walk. It is a quasi-random process based on the proximity of
a node and its neighbor nodes, Equation 4.1. This criterion seeks to favor the finding
of linear paths. The steps of this process are the following.

1) Initialize the environment, the parameters of random walks (Nrw number of ran-
dom walks, Mrw random movements by each ant), and a random walker ant.

2) The random walker ant tries to find a route to the final node.
a) In each step, the ant gets the proximity of each of the next possible nodes.

Then, the Mrw nodes with the best proximity are filtered, Fig. 4.4. Later, the
algorithm choices randomly one of these nodes.

b) Repeat a) until reaching the final node. The proximity measure gave us a high
probability that the process reaches the target node. However, it could appear
stuck conditions, resulting in the discarding of the current route.

3) If the ant finds a route, a reinforcement over the environment takes place using
Equation 4.3.

Information Technology Engineer 40 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

4) After each random walk finding, an evaporation step occurs using Equation 4.5.
5) Repeat steps 2, 3 and 4 until complete a Nrw number of random walks.

Initial Node Final Node Two Best Proximity Nodes Current Node

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

Random Walk

Figure 4.3: Proximity Random Walk Process with Mrw = 2

Figure 4.4: Final Route of Proximity Random Walk

2. Semi-Proximity Random Walk. It is also a quasi-random process based on the
random choice of nodes and the proximity heuristic, Equation 4.1. This criterion
seeks to favor the finding of not linear paths. The steps of this process are the
following:

1) Initialize the environment, the parameters of random walks (Nrw number of ran-
dom walks, RNrw number of intermediate random nodes), and a random walker
ant.

2) The random walker ant gets a RNrw number of intermediate random nodes be-
tween the initial and final node, Fig 4.5. The algorithm always selects a new
random number that is closer to the objective than the previous one. This action
allows to select more distant random nodes. In this point, we have an order list
of RNrw unlinked nodes, Fig. 4.6.

3) The random walker ant tries to link the nodes of this list, for finding a feasible
route to the final node.

Information Technology Engineer 41 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

a) In each step, the ant gets two nodes of the list and tries to connect them
following the best proximity in each step. In other words, it is like to apply
a proximity random walk, but using Mrw = 1 in each step. If the algorithm
does not achieve to connect the nodes, the ant gets stuck.

b) Repeat a) process with each pair of nodes until complete the path or stuck
condition.

4) If the ant finds a route, a reinforcement over the environment takes place using
Equation 4.5.

5) After each random walk finding, an evaporation step occurs using Equation 4.5.
6) Repeat steps 2, 3, 4 and 5 until complete a Nrw number of random walks.

Initial Node Final Node Random Nodes Possible Random Nodes

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

Random Walk

Figure 4.5: Semi-Proximity Random Walk Process with RNrw = 3.

Figure 4.6: Final Route of Semi-Proximity Random Walk

4.2.4 Local Interactions
The local interactions aim to control the behavior of ants concerning obstacles that can
appear in preprocessing time or execution time. The principal problem of the addition of

Information Technology Engineer 42 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

many obstacles is that it can generate several stuck conditions that delay the algorithm
and even prevent it from converging. The ACOv0 can deal with the addition of obstacles
if the environment is free or partially free. However, the ACOv0 is not able to solve en-
vironments with many obstacles (or maze environments) by itself. For these reasons, we
added some local interactions which can deal with these problems. The basic idea of a
local iteration is removing ants and its possible contribution once the ant gets stuck.

In comparison with nature, these local interactions can simulate the real behavior of
ants, when they die while searching a path. Furthermore, these additional features allow
us to generate a more adaptive behavior when we generate obstacles in execution time.
The obstacle apparition is commonly on real-life path planning simulation, where the
obstacles can represent real risks (floods, fires, or others). The present work proposes
three different variants of local interactions based on local search, pheromone decay, and
additional heuristic.

1. Local Search Interaction (Forbidden List) - ACOv1

This algorithm uses the same parameters and conditions as the ACOv0 but adds a
new interaction known as forbidding nodes. This feature forbids one by one, the
nodes that bring us to a stuck condition. To this end, the algorithm requires a list
of forbidden nodes and a local search. The local search detects if a node can be
forbidden, and the list stores it. If a node is forbidden, any ant can visit it. In this
variant, we altered the movement choice technique, by the following process:

(a) Checking Previous Nodes: If nj is already visited ⇒ N = N − {j}.
(b) Forbidden List Interaction: If nj ∈ F (forbidden list) ⇒ N = N − {j}.
(c) Probability Choice: Following Eq. 4.2.

The reinforcement and evaporation of pheromones of ACOv0 are not altered.

Procedure:

(a) Initialize the environment, parameters, and colony of ants.
(b) One ant of the colony tries to find a route to the final node, using the new

movement choice technique.
i. By the checking previous nodes interaction, the ant could get stuck in

some situations, and not find a route.
ii. By the interaction of the forbidden nodes, the ant could not move to the

nodes of the forbidden list.
(c) If the ant gets stuck, the algorithm takes the last node and performs the local

search. Then, if it is possible to forbid the node, the algorithm stores it in the
list.

(d) If the ant finds a route, a reinforcement over the environment takes place, using
Eq. 4.3.

Information Technology Engineer 43 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

(e) Repeat steps 2, 3, and 4 until complete an episode. An episode occurs when all
the ants have tried to find a route.

(f) After each episode, an evaporation step occurs if at least one ant of the colony
found a route, or if the ants get stuck several times with the same last node. In
this step, the Equation 4.5 is used.

(g) The algorithm continues until the most ants can get the same route. The con-
verge percentage φc defines this stop condition.

Local Search:

The local search is the main feature in this algorithm. As we have seen, it uses the
last node of a stuck route. This analysis is performing in the following way:

• If the current node has one neighbor node, forbid the current node, Fig. 4.7.
• If the current node has two, three, or four neighbor nodes, check the possibility

of arrives at all these nodes without using the current node. If this condition is
possible, then forbid the current node, Fig. 4.7.

current node possible nodeneighbor nodes

 forbid forbid

 forbid forbid

Figure 4.7: Local Search - Minimal Conditions for Forbidding a Node

2. Local Pheromone Reduction - ACOv2 and ACOv4

This version implements another local interaction based on the pheromones. The
idea is to reduce the pheromones each time that an ant gets stuck. In this sense,
the reduction can give a notion of what action can bring us to a stuck situation in the
long term. This pheromone reduction can be produced of two ways over the wrong
path, or the neighbor nodes using a vicinity value.

• Wrong Path Variant - ACOv2: The pheromone reduction only takes
place in the last nodes of that wrong path. A new parameter RNk indicates the
number of the nodes, which will be reduced. Figure 4.8 indicates this process
in a graphical way.

Information Technology Engineer 44 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

Figure 4.8: ACOv2 Graphical Process with RNk = 3

• Neighbour Nodes Variant - ACOv4: This variant implements a reduction
of pheromones according to the vicinity Vk of the last node. In other words,
each time that an ant gets stuck, the algorithm takes the last node and applies
a reduction over the neighbor edges of the last node. It is essential to set
a parameter Vk to specify the level of propagation. Figure 4.9 indicates this
process in a graphical way.

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

4

9

20 21 22 23 24

Stuck Road Obstacles Nodes Last Node of Stuck RoadPheromone Reduction

Figure 4.9: ACOv4 Graphical Process with Vk = 2

It is essential to mention that this algorithm uses the same parameters, reinforcement,
and evaporation process of the ACOv0. However, the environment must have an
initial amount of pheromones greater than zero; it is τ0 > 0. Besides, in the initial
stages, the ants must know about this initial amount of pheromones. For this reason,
the pseudo-generator is changed to the Equation 4.7.

pkij = rij∑
l∈N ril

(4.7a)

where rij is:

Information Technology Engineer 45 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

rij =

q1
ij if τij = τ0

q2
ij if episode < δ

qij otherwise

(4.7b)

, and

qij = ταij · ν
β
ij (4.7c)

q1
ij = ναij ·

1
dij

β

(4.7d)

q2
ij = ναij ·

1
dij

β

· τβij (4.7e)

Procedure:

(a) Initialize the environment, parameters, and colony of ants.
(b) One ant of the colony tries to find a route to the final node, using the variant

of the pseudo-generator, Eq. 4.7.
i. By the checking previous nodes interaction, the ant could get stuck in

some situations, and not find a route.
ii. By reducing the number of pheromones, the ant should avoid edges

with less amount of pheromones.
(c) If the ant gets stuck, the algorithm takes the last nodes, applies a specific variant

ACOv2 or ACOv4, and reduces the pheromones over the edges. This reduction
is progressive; in other words, the closest node receives more reduction than the
furthest nodes, Fig. 4.8, 4.9.

(d) If the ant finds a route, a reinforcement over the environment takes place, using
Eq. 4.3.

(e) Repeat steps 2, 3, and 4 until complete an episode. An episode occurs when all
the ants have tried to find a route.

(f) After each episode, an evaporation step occurs if at least one ant of the colony
found a route, or if the ants get stuck several times with the same last node. In
this step, the Equation 4.5 is used.

(g) The algorithm continues until the most ants can get the same route. The con-
verge percentage φc defines this stop condition.

3. Local Necrophoresis Value Reinforcement ACOv3 and ACOv5

The previous algorithm alters the normal pheromones, which are needed to guaran-
tee the convergence of the algorithm. This action could cause unexpected behaviors

Information Technology Engineer 46 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

in the solutions of the algorithm. In order to avoid this direct interaction, it was
necessary to establish another method to control the stuck routes. For this reason,
this version proposes a method based on another natural behavior of the ants, know
as Necrophoresis [43]. In this natural event, another type of ants participate called
Ant Undertaker. These ants carry the dead bodies of colony members from the en-
vironment to the nest. This action aims to confer healthcare to the environment, for
preventing diseases or infections.

According to Necrophoresis behavior, we proposes a local interaction that consists in
the reinforcement of another heuristic value called necrophoresis value κij. This
heuristic value indicates a measure of how likely it would get stuck if we take a di-
rection. Therefore, the ants should avoid the places with high κij, avoiding stuck
conditions in the long term. The algorithm is similar to version two; however, now,
instead of reducing the pheromones, we reinforcement the necrophoresis value. Thus,
each time that an ant gets stuck, an ant undertaker reinforces the necrophoresis
value. In this way, the analogy with real behavior is the presence of ants under-
takers that indicates a possible unfeasible path. Furthermore, in this version, it is
not necessary to initialize the number of pheromones with a number different of zero.

This version could perform a reinforcement of necrophoresis value κij in two ways:
over the last nodes of a wrong path, or the neighbors of the last node.

• Wrong Path Variant - ACOv3: The necrophoresis value κij reinforcement
only takes place in the last nodes of that wrong path. A parameterRNk indicates
the number of the nodes which will be reinforced. Figure 4.10 indicates this
process in a graphical way.

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

Figure 4.10: ACOv3 Graphical Process with RNk = 3

• Neighbour Nodes Variant - ACOv5: This variant implements a reinforce-
ment of necrophoresis value κij according to the vicinity Vk of the last node.
In other words, each time that an ant gets stuck, the algorithm takes the last
node and applies a reinforcement over the neighbor edges of the last node. It is

Information Technology Engineer 47 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

essential to set a parameter Vk to specify the level of propagation. Figure 4.11
indicates this process in a graphical way.

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

12 13

17 18

4

9

14

19

20 21 22 23 24

0 1

5 6

10 11

15 16

2 3

7 8

4

9

20 21 22 23 24

Stuck Road Obstacles Nodes Last Node of Stuck RoadNecrophoresis Reinforcement

Figure 4.11: ACOv5 Graphical Process with Vk = 2

In this version, the ant must take into account the necrophoresis value of κij. There-
fore, the algorithm changes the Equation 4.2 to the Equation 4.8. The parameters,
pheromone reinforcement, and evaporation are the same as the ACOv0.

pkij = rij∑
l∈N ril

(4.8a)

where rij is:

rij =

q1
ij if τij = τ0

q2
ij if episode < δ

qij otherwise

(4.8b)

, and

qij = ταij · ν
β
ij · (

1
κij

)β (4.8c)

q1
ij = ναij ·

1
dij

β

(4.8d)

q2
ij = ναij · (

1
dij

)β · (1
κij

)β (4.8e)

Procedure:

(a) Initialize the environment, parameters, and colony of ants.
(b) One ant of the colony tries to find a route to the final node, using the variant

of the pseudo-generator, Eq. 4.8.

Information Technology Engineer 48 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

i. By the checking previous nodes interaction, the ant could get stuck in
some situations, and not find a route.

ii. By reinforcement the number of necrophoresis value κij, the ant
should avoid edges with a high amount of necrophoresis value.

(c) If the ant gets stuck, the algorithm takes the last nodes, applies a specific
variant ACOv3 or ACOv5 and increase the necrophoresis value over the edges.
This reinforcement is progressive; in other words, the closest node receives more
necrophoresis value κij than the furthest nodes, Fig. 4.10, 4.11.

(d) If the ant finds a route, a pheromone reinforcement over the route takes place,
using Eq. 4.3.

(e) Repeat steps 2, 3, and 4 until complete an episode. An episode occurs when all
the ants have tried to find a route.

(f) After each episode, an pheromone evaporation step occurs if at least one ant of
the colony found a route, or if the ants get stuck several times with the same
last node. In this step, the Equation 4.5 is used.

(g) The algorithm continues until the most ants can get the same route. The con-
verge percentage φc defines this stop condition.

4.2.5 Graphic Simulation
The graphic simulation will implement the best variants for the dynamic of the ants. This
simulation aims to demonstrate the adaptive behavior of the algorithm. Nevertheless, in
this phase, we had to introduce a new heuristic measure to get more appropriate three-
dimensional behavior. This measure is the slope equation, which gave us an idea of height
between nodes.

Slope Equation

At first implementations, the environment consisted of a graph G(N,E) in two dimen-
sions. Then, the graph added some intrusions and extrusion in some nodes to get a
three-dimensional mesh, Fig 4.14. By this change, it is necessary to establish some weights
which take in mind the slope or confer the notion of height. These conditions are neces-
sary because it is not the same to walk in a climb than in a fall. Therefore, we proposed
a technique to represent three-dimensional behavior using vectors and angles. In this way,
let the current position ni and the next possible node nj, it is defined two vectors u and
v, Fig 4.13. Then, we get the θ angle. However, the angles are in the rank [−90, 90]. This
interval alters the calculated values of the probability function drastically. For this reason,
we use a slope function, Equation 4.9, based on the Gaussian Function center in zero that
confers a kind of normalization to the angles for avoiding the use of large numbers.

sij =

(1− ω)e

θ2
2c2 if θ > 0

ωe
θ2
2c2 if θ ≤ 0

(4.9)

Information Technology Engineer 49 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Equation 4.9 returns three different behavior according to the value of ω parameter.
Considering the Gaussian Equation, the values ω and (1 − ω) indicate the highest points
of the bell. In this way, using the parameter ω, we can adjust the priority of ascents and
descents. Therefore, if the environment condition indicates that the initial and final nodes
are at the same height, we could use a ω = 0.5, which gives the same priority to ascents and
descents, Fig. 4.12. Then, if the initial node is above the final node, we could use a value ω
close to 1, which prioritizes the descents, Fig. 4.12. Finally, if the initial node is under the
final node, we could use a value close to 0, which prioritizes the ascents. On the other hand,
the parameter c controls the width of the Gaussian curve, which prioritizes a larger range
angles, Fig. 4.12. This parameter avoids falling in really steep ascents or descents (ravines).

0
0.1
0.2
0.3
0.4
0.5

ω = 0.5
−40−20 0 20 40

0

0.2

0.4

0.6

0.8

ω = 0.7
−40−20 0 20 40

0

0.2

0.4

0.6

0.8

ω = 0.3
−40−20 0 20 40

0
0.1
0.2
0.3
0.4
0.5

c = 8
−40−20 0 20 40

0
0.1
0.2
0.3
0.4
0.5

c = 10
−40−20 0 20 40

0
0.1
0.2
0.3
0.4
0.5

c = 20
−40−20 0 20 40

Figure 4.12: Slopes Functions with Different Paraters ω and c

It is important to mention that the slope function sij return values in the interval (0, 1].
Moreover, the slope sij is different from sji because, in the first case, it is a climb, and in
the second case, it is a drop, Fig. 4.13.

θ

θ

current nodenext possible nodes

i

j

j

i

u

w

w

u

a) b)

Figure 4.13: 3D Technique. a) positive slope, b) negative slope.

Information Technology Engineer 50 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

According to Equation 4.9 and using Random Walk 2, in this graphic simulation, we
changed the Movement Choice, Equation 4.2, by Equation 4.10.

pkij = qij∑
l∈N qil

(4.10a)

where qij is:

qij = ταij · (νij · sij)β (4.10b)

4.3 Experimental Setup

4.3.1 Data Generation Method
In this section, we defined the data sets, as well as a brief justification for its use.

The final graphic simulation of this work seeks to establish a versatile algorithm that fits
a vast number of path planning problems. To this end, we decided to use graphs because
many real issues can easily be translated into graphs. Besides, applying minimal changes,
the proposed techniques can work with other representation such as cell decomposition,
or road maps. The nodes of the graphs proceed from Wavefront .obj files, which can be
produced from several software tools. In this project, we use Blender for creating these
files by the ANT Landscape Tool [44], which generates random environments with different
topographies. The acronyms ANT refers to Another Noise Tool, not to biological ants. In
the first experiments, we worked with two-dimensional representations of these graphs.
However, one of the objectives is working under three-dimensional conditions. To this end,
using the ANT Landscape Tool, we create smooth intrusions and extrusions in some nodes
to create three-dimensional meshes, Fig 4.14. These representations help us to model more
real scenarios with different topographic conditions.

Extrusions Intrusions Not affected nodes

Figure 4.14: Mountain Environment: two-dimensional mesh without Extrusion or Intru-
sion, and three-dimensional mesh with Extrusion or Intrusion.

Information Technology Engineer 51 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

The data sets of this algorithm implement four different topographic instances: Moun-
tain, Valley, Doble Valley, and Perlin Noise meshes. These representations of terrains help
us to work under similar conditions for a comparison between the ACO algorithm versions,
and with other implementations. Moreover, the data sets have different sizes. In other
words, the terrains are the same, but with a different number of nodes and edges (the total
dimension is not altered). This additional information can produce a better realistic envi-
ronment because the movements will be smoother and visually more appealing. Moreover,
it is essential to establish a benchmark upon which measure the performance of our model.
In this way, it was used a complete search algorithm, known as the Dijkstra algorithm,
Chapter 3, for finding the best solutions 4.2.

(a) Mountain Environment (b) Doble Valley Environment

(c) Valley Environment (d) Perlin Noise Environment

Figure 4.15: Different Experimental Environments

The experiments were performed for the data set listed in Table 4.1. Column |N |
contains the number of nodes graph, column |E| presents the number of edges belonging to
the graph, and column |Eo| presents the number of edges considering the obstacles of Maze
Environments. In the following, we will refer to this set of instances as the experimental
set.

Information Technology Engineer 52 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Sample Size |N | |E| |Eo|
1 10 100 180 117
2 12 144 264 174
3 14 196 364 233
4 16 256 480 311
5 18 324 612 402
6 20 400 760 511
7 22 484 924 596
8 24 576 1104 722
9 26 676 1300 800
10 28 784 1512 949
11 30 900 1740 1104
12 32 1024 1984 1276
13 34 1156 2244 1453
14 36 1296 2520 1592
15 38 1444 2812 1784
16 40 1600 3120 1985
17 42 1764 3444 2196
18 44 1936 3784 2388
19 46 2116 4140 2645
20 48 2304 4512 2892
21 50 2500 4900 3113

Table 4.1: Experimental Set for Mountain, Valley, U-terrain and Perlin Noise

The present algorithm also must have some adaptive characteristics; in other words, it
must be able to respond to the appearance of obstacles. For this reason, these environments
must allow the introduction of obstacles for testing the adaptive condition. In this way,
we can insert an obstacle in two ways:

• An edge can be an obstacle, so an ant can not move through it.

• A node can be an obstacle, so an ant can not move to it through any of its possible
connections. This obstacle forbids four edges at the same time.

Information Technology Engineer 53 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Size Best Cost
Best Cost With Obstacles

Mountain Perlin Valley Double Valley
10 20 23,78 20,14 20,89 21,78
12 20 24,78 20,42 21,53 22,10
14 20 23,97 20,65 20,89 21,87
16 20 25,85 22,40 23,63 23,58
18 20 24,36 21,69 21,88 21,90
20 20 24,09 20,46 21,82 21,70
22 20 24,48 20,70 21,61 22,83
24 20 25,00 22,30 22,55 22,98
26 20 24,74 22,23 21,95 23,18
28 20 25,73 22,48 22,89 23,90
30 20 26,60 23,22 23,80 23,55
32 20 23,89 21,22 21,85 21,88
34 20 24,55 21,62 21,69 22,43
36 20 24,98 21,93 22,80 23,35
38 20 24,55 22,66 22,64 23,17
40 20 24,32 22,75 21,86 22,81
42 20 25,43 23,37 22,72 23,93
44 20 25,19 23,03 23,04 23,07
46 20 26,38 24,11 23,77 24,14
48 20 24,67 23,16 22,86 23,01
50 20 24,18 23,14 21,69 22,68

Table 4.2: Cost Values of the Experimental Set

In some experiments, it was necessary to establish some predefined environments with
obstacles, Table 4.1. These environments have many obstacles in the form of a maze
and were defined as maze environments. We used a randomized version of the Kruskal
algorithm for creating these environments, which allows us to generate random maze config-
urations. Figure 4.16 shows some examples of the random maze environments generated.
The Kruskal algorithm [45] is a method for producing a minimal spanning tree from a
weighted graph. The randomized version differs from the original in the searching of the
minimal cost edges, instead of that, the proposed version search random cost edges.

Information Technology Engineer 54 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Possible Edges Initial Node Final Node

5x5 9x9 17x17

Figure 4.16: Random Maze Environments Examples: 5× 5, 9× 9 and 17× 17

4.3.2 Analysis Method
In this subsection, we defined the ways to study the model proposal. To evaluate and
compare the performance of the model proposed in Section 4.2, a series of experiments was
planned. These experiments were designed with certain research intentions:

1. Identification of good values for ACO parameters.

2. Evaluation of basic ACO algorithm using the proposed reinforcement, evaporation,
and movement choice methods

3. Performance evaluation of global and local interactions.

4. Comparison of the ACO algorithm and other path planning techniques using the best
performing ACO variant.

5. Evaluation of the adaptability behavior using a graphical simulation.

To these ends, we defined a set of measures for testing the algorithms. These mea-
sures helped us to understand the algorithm performance in terms of duration, precision,
learning, exploration, exploitation, and adaptability. The performance measures are the
following:

• Execution Time (ET) is a measure of duration in units of time. It is the time
until getting the convergence. This measure depends on the computer and the pro-
gramming language. In this way, we used a clock function of C# (Stopwatch Class)
for getting the initial and final time. Then, the execution time follows the Equation
4.11.

ET = tf − ti (4.11)

where ET is the total execution time, tf is the final time, and ti is the initial time.

• Accuracy (AC) is a measure of precision used to detect what is the level of confi-
dence of our algorithm in percentage. This measure indicates the approximation of
predicted solution to the optimal solution. To this end, we used the cost function

Information Technology Engineer 55 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

defined in Equation 2.1. Thus, we measured the optimal solution of the experimental
set, Table 4.2. According to these considerations, the accuracy is the Equation 4.12.

AC = Copt
Cpred

(4.12)

where Copt is the cost of the best optimal solution of the data set, and Cpred is the
cost of the predicted solution by the used method.

• Episodes Number (EP) is a measure of duration in terms of iterations. It is the
number of iterations until getting the convergence. This measure depends on the
algorithm design.

• Stuck Roads Number (SR) is a measure of duration, exploration, and exploita-
tion. It is the number of times that an ant gets stuck. This measure depends on the
algorithm design.

• Relative Visited Nodes Number (VNr) is a measure of exploration and ex-
ploitation. It is the percentage of nodes visited by the ants according to the total
number of nodes in the environment. This measure depends on the algorithm design.

• Relative Visited Edges Number (VEr) is a measure of exploration and exploita-
tion. It is the percentage of edges visited by the ants according to the total number
of edges in the environment. This measure depends on the algorithm design.

• Percentage of Environment Learned (PE) is a measure of learning and preci-
sion. It is how many positions have been learned by the ants. This measure considers
a static ant that moves only following the maximum number of pheromones. Thus,
this ants helps us to measure, from how many positions of the environment, an ant
can find the end by following only the pheromones. Figure 4.17 explains this behavior
in a better way. In this figure, the expected extra learned positions are in the green
zone.

Figure 4.17: Percentage of Environment Learned (PE).

Information Technology Engineer 56 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Software and Hardware Considerations

These experiments were executed in a computer with the following specifications:

• Processor: Intel Core(TM) i7-7700HQ CPU @2.80GHz 2.81 GHz

• RAM: 16.0GB

• System type: 64-bit Windows 10 Operating System

The algorithms were programmed in C#, and the graphic simulation used Unity 3D
framework.

Biplot and Principal Component Analysis Methods

This work implements several performance measures. For this reason, it is necessary to
use an accurate way to analyze these results. The multivariate statistical analysis gave
us several tools to deal with this kind of issue. In this work, we decided to use a Biplot
method based on Principal Component Analysis (PCA). A Biplot [46] is a two-dimensional
representation of multivariate data. This plot shows a point for each observation (one
execution of the algorithm) , and a point for each variable (performance measure). The
prefix bi refers to two kinds of points representations, not to a bi-dimensional plot [46].

In this sense, for analyzing the result, we expected to obtain results that can be cate-
gorized in the following groups:

• Duration: Execution Time (ET), Episodes Number (EP), Stuck Roads (SR).

• Precision: Accuracy (AC), Percentage of Environment Learned (PE).

• Exploration and Exploitation: Relative Visited Nodes (VNr), Relative Visited Edges
(VEr).

How to interpret a Biplot graph?

The following explanation is based on the book Methods of Multivariate Analysis of
Rencher Alvin C, [46]. We start the interpretation using the matrix Y , where each n
rows correspond to the observations (each execution of the algorithm), and the p columns
correspond to the variables (our performance measures).

Y =

y′1
y′2
...
y′i
...

y′n

=

y11 y12 · · · y1j · · · y1p
y21 y22 · · · y2j · · · y2p
...
yi1 yi2 · · · yij · · · yip
...
yn1 yn2 · · · ynj · · · ynp

Information Technology Engineer 57 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

yi =

yi1
yi2
...
yij
...
yip

, y = 1

n

n∑
i=1

yi =

ȳ1
ȳ2
...
ȳp

We perform a Principal Component Analysis (PCA), and we get

Z = Yc A (4.13)

Z =

z′1
z′2
...

z′n

 , Yc =

(y1 − y)′
(y2 − y)′

...
(yn − y)′

where A =

(
a1, a2, . . . , ap

)
is the p×p matrix whose columns are (normalized) eigenvec-

tors of S (the covariance matrix). For drawing the Biplot, we need to consider the principal
components 1 and 2 which have the best representation of Yc. Therefore, as the eigenvec-
tors aj of the symmetric matrix S are mutually orthogonal, then A =

(
a1, a2, . . . , ap

)
is

an orthogonal matrix and AA′ = I. Multiplying 4.13 on the right by A′, we obtain

Yc = ZA′ (4.14)

The best two-dimensional representation of Yc is given by taking the first two columns
of Z and the first two columns of A. If the resulting matrices are denoted by Z2 and A2,
we have

Yc
∼= Z2A′2 =

z11 z12
z21 z22
... ...
zn1 zn2

(
a11 a21 · · · ap1
a12 a22 · · · ap2

)
(4.15)

The elements of 4.15 are of the form.

yij − ȳj ∼= zi1aj1 + zi2aj2, i = 1, 2, . . . , n; j = 1, 2, . . . , p

Thus each observation is represented as a linear combination. Therefore, we plot the
points (zi1, zi2), i = 1, 2, . . . , n which represent the coordinates for the n observations; and
the points (aj1, aj2), j = 1, 2, . . . , p which correspond to the coordinates for the p variables.
To distinguish them and to show relationship of the observations to the variable, the points
(aj1, aj2) are connected to the origin with a straight line.

Information Technology Engineer 58 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Once the biplot is drawn, the following different conclusions can be interpreted:

• Principal Components Fit. The adequacy of the fit of the principal components
can be examined with the two eigenvalues of λ1 (PC1) and λ2 (PC2) of S. Thus a
significant value (close to 100%) of

(Explained) PC1 + PC2 = λ1 + λ2∑p
i=1 λi

∗ 100%

would indicate that Yc is well represented by the plot.

• Level of Variability of each Variable. The length of lines drawn by each axis
point (aj1, aj2) indicates a perception of the variance of the corresponding variable.
Thus a long length indicates a high level of variability in the corresponding variable.

• Correlation between Variables. The cosine of the angle between the lines drawn
to each pair of axis points (aj1, aj2) and (ak1, ak2) shows the correlation between
the two corresponding variables. Thus a small angle between two vectors indicates
that the two variables are highly correlated, two variables whose vectors form a 90◦
angle are uncorrelated, and an angle greater than 90◦ indicates that the variables are
negatively correlated.

• Relevance of a Variable over an Observation. The values of each variable
corresponding to the observation yi (corrected for means) are related to the perpen-
dicular projection of the point (z1i, z2i) on the p vectors from the origin to the points
(aj1, aj2). Thus, the further from the origin a projection falls on a line, the larger
the value of the observation on that variable. In the same way, if the perpendicular
projection falls into the opposite vector direction, the values of the observation on
that variable will be small.

Information Technology Engineer 59 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer 60 Final Grade Project

Chapter 5

Results and Discussion

In this chapter, we document our experiments of the model proposal with different ACO
configurations. For the analysis of the model, we follow a progressive study. First, we
present the ACO basic version or ACOv0 for having a base to work. Then, using the
ACOv0, we tested the global interactions, also known as random walks. Next, we evalu-
ated the performance of the local interaction versions. Later, based on previous results,
we determined the best ACO version. We used this final version for comparing with other
already existed methods. Finally, we presented some qualitative results showing the adapt-
ability of the algorithm in a graphical simulation.

It is important to note that all the results of this chapter show similar performance
when works with small sizes meshes. For this reason, the analysis was focused on the
results with the large mesh sizes. Furthermore, for each graph first, we describe some
results, and then we write a discussion about these results.

5.1 Performance Evaluation of ACOv0
The first experiment pretended to be a base for the next experiments. In this way, we need
to have an initial idea of the performance of this algorithm. The initial configuration was:

Version φc A α β τ0 ρ δ

ACOv0 0.7 15 3 2 0 0.5 2

Table 5.1: Parameters of ACOv0

We executed this experiment n = 30 times, and the mean, median, and possible outliers
of the performance measures were presented.

61

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.1 shows the execution time (ET) according to each size with different terrains.

Execution time: n = 30, ants = 15, α = 3, β = 2, τ0 = 0, ρ = 0.5, φc = 0.7

E
xe

cu
tio

n
Ti

m
e

(m
s)

M
ou

nt
ai

n

0
5000

104
1.5×104

2×104
2.5×104

3×104

V
al

le
y

0
5000

104
1.5×104

2×104
2.5×1043×104

D
ob

le
 V

al
le

y

0
5000

104
1.5×104

2×104
2.5×104

3×104

Pe
rli

n

0
5000

104
1.5×104

2×104
2.5×1043×104

Size of Mesh
10 20 30 40 50

Figure 5.1: Execution Time by Size of Environment - ACOv0

According to these results, there are no notable differences between the execution times
of each terrain; in other words, they present similar behaviors. The figure shows an in-
creasing behavior in time as the size also increases. Furthermore, we can observe that
the amount of outlier measures is higher with a large mesh size. This result can be due
to the random behavior of ACO, which can provoke that the algorithm convergences at
different times. Thus, as we increase the size, the randomness also increases, and hence the
execution time. These outliers also can be due to the current state of the computer, which
could generate unpredicted behaviors that alters the time results. In extreme conditions,
with large sizes than 50, it would be feasible to execute these experiments in an external
computer, not in a home computer.

Other results are the maximum and minimum time of the smallest and largest sizes,
respectively. In mean and median, with large sizes, this time does not exceed the 10000ms
or 10s for Double Valley meshes, and 5s for all the other terrains. Moreover, the minimum
time with small terrains is close to 1s. We can conclude that the times of large environ-
ments are high, considering the small scale of the experimental set. In this sense, we aimed
to reduce these values in the next implementations.

Information Technology Engineer 62 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.2 shows the number of episodes (EP) that the algorithm needs to converge
with a specific size.

Number of Episodes: n = 30, ants = 15, α = 3, β = 2, τ0 = 0, ρ = 0.5, φc = 0.7

N
um

be
r o

f E
pi

so
de

s
(i

te
ra

tio
ns

)

M
ou

nt
ai

n

0
200
400
600
800

1000

V
al

le
y

0
250
500
750

1000
1250

D
ob

le
 V

al
le

y

0
250
500
750

1000
1250

Pe
rli

n

0
250
500
750

1000
1250

Size of Mesh
10 20 30 40 50

Figure 5.2: Episodes by Size of Environment - ACOv0

These results show that the episode number is almost similar in each terrain. The
Mountain terrain seems to have increasing behavior smoother than the others, but it is not
so significant. There is an evident increment of episodes as the size of mesh increase like
the previous execution time results, Fig. 5.1. Moreover, there are several possibles outliers
in the mesh with large sizes. We expected that these results resemblance to the execu-
tion time of Figure 5.1 because the episodes number (EP) is also a measure of duration.
Nevertheless, the computer state does not affect the number of episodes. This measure,
therefore, can give a theoretical idea of the global time complexity of the algorithm. In this
way, in this algorithm, the results show an average of 600 episodes with large sizes of mesh.
This value indicates that the algorithm takes 600 episodes by 15 ants to converge or 9000
iterations in total. In general, these results are very high, considering the implemented size
of the mesh. For this reason, in succeeding versions, we aimed to reduce this complexity.

Information Technology Engineer 63 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.3 shows the accuracy (AC) according each size of mesh environment and
environment type.

Accuracy: n = 30, ants = 15, α = 3, β = 2, τ0 = 0, ρ = 0.5, φc = 0.7

A
cc

ur
ac

y
(%

)

M
ou

nt
ai

n

20
40

60

80

100

V
al

le
y

20
40

60

80
100

D
ob

le
 V

al
le

y

20
40

60

80
100

Pe
rli

n

20

40

60

80
100

Size of Mesh
10 20 30 40 50

Figure 5.3: Accuracy by Size of Environment - ACOv0

These results indicate a high accuracy over the small environments and low accuracy
over the larger environments. The smallest mesh shows results around 90%, and, in some
cases, the algorithm gets optimal solutions. In general, we expected to no get always
optimal solutions because the ACO metaheuristic does not guarantee to find an optimal
solution, only a feasible solution. However, using large sizes, the results present an accu-
racy really low. In fact, in the large environments, the accuracy is less than 50% in most
of the cases. For these reasons, in the next implementations, we aimed to improve these
results with the addition of global and local interactions.

Furthermore, another result of interest is the behavior with each type of terrain. Ac-
cording to Fig. 5.3, the accuracy is a little better in the environment with Perlin Noise.
Nevertheless, the difference is not too marked. In this sense, we could consider that all the
methods have similar behaviors.

Information Technology Engineer 64 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

The following graph shows the percentage environment learned (PE) according to each
size of the mesh environment and environment type.

Percentage of Environment Learned: n = 30, ants = 15, α = 3, β = 2, τ0 = 0, ρ = 0.5, φc = 0.7

Pe
rc

en
ta

ge
 o

f E
nv

iro
nm

en
t L

ea
rn

ed
 (%

)

M
ou

nt
ai

n

0
20
40
60
80

100

V
al

le
y

0
20
40
60
80

100

D
ob

le
 V

al
le

y

0
20
40
60
80

100

Pe
rli

n

0
20
40
60
80

100

Size of Mesh
10 20 30 40 50

Figure 5.4: Percentage of Environment Learned by Size of Environment - ACOv0

The present work aims to find the route from the initial to the final position, that is
to say, one to one. However, the nature of this algorithm provokes that the algorithm
also learns to move from other initial positions (many to one path planning problem). Ac-
cording to these results, we can observe that this learning is higher in small environments
than in large environments. Therefore, the capacity to move from other initial positions
is higher in small terrains. Nevertheless, it is essential to think about the quality of these
other solutions. For this reason, we also have to analyze the previously studied accuracy,
Fig 5.3, which influences the quality of these new solutions. Thus, if this accuracy and the
environment learned are good, the ants have a good opportunity to find optimal solutions
from several initial positions. In this way, in these results, we can see that the environments
with the most accuracy and more percentage environment learned are the small terrains.

On the other hand, the low results for large environments can be by the number of
nodes and the exploration capacity of the algorithm. In other words, when the algorithm
has more nodes, it is more difficult for the ants to explore all the positions. Thus, the
algorithm is more focused on the aim one to one and exploits it. In fact, this result is

Information Technology Engineer 65 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

the expected; the algorithm should exploit the main objective, and the exploration of new
positions are alternative results which could be useful, but no necessary.

Figure 5.5 shows the interaction between the different performance variables of the
algorithm and the interaction Environment-Size.

Figure 5.5: Biplot ACOv0. Explained: 78,3% + 17,8%

These results help us to confirm some of the previous results. In this graph, we can
observe that the meshes with the most significant size are the meshes with more execution
time (ET) and episodes (EP). Then, the small meshes are the meshes with more accuracy
(AC) and more percentage environment learning (PE). Moreover, we can observe the in-
teractions of other variables that measure the capacity of exploration and exploitation of
the algorithm. In this sense, we can observe that the environments with more capacity of
exploration are the middle and high size meshes. It is because these environments have
high values of relative visited nodes (VNr) and edges (VEr), which indicates that in per-
centage, they visited more the environment than the small meshes. It is a contradictory
result because they have a low percentage of the environment learned (PE). This inconsis-
tency could be due that, although the large meshes can be more explored, the number of
pheromones over these edges can disappear quickly.

Information Technology Engineer 66 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

On the other hand, another result of this graph is the stuck roads (SR). This measure
indicates that large meshes have more stuck roads than others. These values are related to
the execution time (ET) and episodes number (EP) because the algorithm will take longer
to converge if there are many stuck conditions.

5.2 Evaluation of Global Interactions Performance
In the following experiments, we evaluated the performance of two versions of random
walk, Section 4.2. Random Walk 1 (RW1) is the Proximity Random Walk, and Random
Walk is the Semi-Proximity Random Walk. These versions were tested using several initial
configurations, and the best results were found implementing the parameters of Table 5.2.

Version φc A α β τ0 ρ δ Nrw Mrw RNrw ∆τrw ρrw

ACOv0 0.7 15 3 2 0 0.5 2 – – – – –
ACOv0 + RW1 0.7 15 3 2 0 0.5 – 20 2 – 0.2 0.25
ACOv0 + RW2 0.7 15 3 2 0 0.5 – 20 – 10 0.2 0.25

Table 5.2: Parameters of Random Walk Experiments

Each experiment was executed n = 30 times, and the mean, median, possible outliers
of performance variables and biplot graphs were shown.

Figure 5.6 shows the execution time of the two different random walks, when they find
twenty random route, or Nrw = 20.

Random Walk Execution Time: Nrw = 20, Mrw = 2, RNrw = 10, Δ τrw = 0.2, ρrw = 0.25

R
an

do
m

 W
al

k
E

xe
cu

tio
n

Ti
m

e
(m

s)

R
an

do
m

 W
al

k
1

0
5

10
15
20
25
30

R
an

do
m

 W
al

k
2

0
5

10
15
20
25

Size of Mesh
10 20 30 40 50

Figure 5.6: Random Walk Comparison Execution Time

Information Technology Engineer 67 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

According to these results, we can state that the random walks, in general, do not
spend much time. The maximum time to find Nrw random routes does not exceed 12s
to Random Walk 1 and 15s to Random Walk 2. Moreover, we could indicate that the
Random Walk 1 is faster than Random Walk 2; however, the difference is not so marked.
It is better to assume that the random walks spend similar execution times. These values
are preprocessing times, and they were not considered in the posterior experiments. Some
weird results are the time of Random Walk 2 with a size of 44. These results show several
possible outliers; it could indicate that in the execution time, the computer could present
some unexpected behaviors. In a more laborious study, we should remove these possible
outliers and recalculate the times.

According to previous experiments of ACOv0, we observe that the results of different
terrain types (Valley, Double Valley, Mountain and Perlin) do not have significant vari-
ability. For this reason, we decided to enclose all the results in graphs which summarize
all their behaviors. In other words, in the following parts, we do not divide the graphs by
each terrain type.

The following graph show the relation between size and execution time of the ACOv0
using the different random walks, and without any random walk.

Execution Time: n = 30, ants = 15, α = 3, β = 2, τ0 = 0, ρ = 0.5, φc = 0.7

E
xe

cu
tio

n
Ti

m
e

(m
s)

A
C

O
v0

0

104

2×104

3×104

4×104

 A

C
O

v0
 +

R

an
do

m
 W

al
k

1

0
10
20
30
40
50
60

 A

C
O

v0
 +

R

an
do

m
 W

al
k

2

0
10
20
30
40
50
60

Size of Mesh
10 20 30 40 50

Figure 5.7: Random Walk and ACOv0 Comparison Execution Time

Information Technology Engineer 68 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

In Fig. 5.7, we can observe a reduction in time by the random walks in comparison with
the ACOv0 alone. This reduction is remarkable; that is to say, the mean and median time,
with an environment of size 50, is reduced on a scale of 2000

15 ≈ 13 times approximately.
Another interesting result is that the Random Walk 2 seems to have better results than
the Random Walk 1. It indicates that the initial pheromone values produced by Random
Walk 2 are better than Random Walk 1. These results could be due to the accuracy of
the random routes found in the preprocessing phase. In the experiments stage, we could
observe that the random routes of RW2 get more times the accuracy of 100% than the RW1
routes. In this way, when we add the Random Walk 2 to the ACOv0, it seems coherent to
get the convergence in less time. We presented this result in more detail, analyzing Fig.
5.9. Furthermore, we can observe that there are many outliers with high variability in the
Random Walk 1 experiment than in the Random Walk 2 experiment. These could indicate
that the algorithm is not enough stable using Random Walk 1.

Figure 5.8 shows the relation between size and number of episodes of the ACOv0 using
the random walk algorithms, and without any random walk.

Number of Episodes: n = 30, ants = 15, α = 3, β = 2, τ0 = 0, ρ = 0.5, φc = 0.7

N
um

be
r o

f E
pi

so
de

s
(i

te
ra

tio
n)

A
C

O
v0

0
250
500
750

1000
1250
1500

 A

C
O

v0
 +

R

an
do

m
 W

al
k

1

0

2

4

6

8

 A

C
O

v0
 +

R

an
do

m
 W

al
k

2

0

2

4

6

8

Size of Mesh
10 20 30 40 50

Figure 5.8: Random Walk and ACOv0 Comparison Episodes Number

These results indicate that the use of random walks reduces the number of episodes
drastically. This reduction can be translated into a reduction of the computational com-

Information Technology Engineer 69 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

plexity of the algorithm when this works with large environments. In fact, on average,
the algorithm could have an approximated complexity of 2.5× 15 for Random Walk 1 and
1.5 × 15 for Random Walk 2; it is to say, 37.5 iterations using Random Walk 1 and 22.5
iterations using Random Walk 2 approximately. Moreover, the increase in the episodes
number is almost constant with all the sizes. In this way, we could expect to get similar
complexities with high size environments which were not studied in this work. Finally, we
could say that the Random Walk 2 has lesser episodes than Random Walk 1. Again, it
could be due to the quality of the random routes found by each method.

Figure 5.9 shows a comparison between the size and accuracy of the ACOv0 using
different variants of random walks, and without any random walk.

Accuracy: n = 30, ants = 15, α = 3, β = 2, τ0 = 0, ρ = 0.5, φc = 0.7

A
cc

ur
ac

y
(%

)

A
C

O
v0

20

40

60

80

100

 A

C
O

v0
 +

R

an
do

m
 W

al
k

1

30
40
50
60
70
80
90

 A

C
O

v0
 +

R

an
do

m
 W

al
k

2

40
50
60
70
80
90

100

Size of Mesh
10 20 30 40 50

Figure 5.9: Random Walk and ACOv0 Comparison Accuracy

According to these results, the random walks improve the accuracy of the ACOv0 with
all sizes environments. Moreover, if we compare both random walks, we can see better
results in Random Walk 2. As the previous results, Fig. 5.7, 5.8, this could be due to
the precision of random routes found by the random walk algorithm. In the experimental
phase, we found that the random routes of Random Walk 2 were closer to the optimal
solution than the routes of Random Walk 1. Therefore, we expected to have better results
of ACOv0 using Random Walk 2. On mean and median, all the accuracies are higher than

Information Technology Engineer 70 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

80% in Random Walk 1, and greater than 95% in Random Walk 2. The outstanding results
are the experiments with large sizes where the accuracy increase in a scale of 80

45 ≈ 1.78 times
approximately for Random Walk 1 and 95

45 ≈ 2.11 times approximately for Random Walk 2.

Moreover, Random Walk 2 presents more constant behavior, which means that if we
work with larger sizes, we could get similar results. These results confer an excellent quality
of scalability to the algorithm. Despite all these excellent results, the presence of outliers
is high. This issue is due to the algorithm randomness. We should expect it because we
are working with a metaheuristic technique which does not guarantee to find an optimal
solution, just feasible solutions.

Figure 5.10 shows the relation of percentage environment learned and the mesh size of
ACOv0 using different random walk techniques.

Percentage of Environment Learned: n = 30, ants = 15, α = 3, β = 2, τ0 = 0, ρ = 0.5, φc = 0.7

Pe
rc

en
ta

ge
 o

f E
nv

iro
nm

en
t L

ea
rn

ed
 (%

)A
C

O
v0

0
20

40

60

80

100

 A

C
O

v0
 +

R

an
do

m
 W

al
k

1

0
20

40

60

80
100

 A

C
O

v0
 +

R

an
do

m
 W

al
k

2

0

20

40

60

80
100

Size of Mesh
10 20 30 40 50

Figure 5.10: Random Walk and ACOv0 Comparison Percentage Environment Learned

According to the graph, the percentage of the environment learned presents better re-
sults using Random Walk 2 than using Random Walk 1. In fact, this percentage decreases
faster using Random Walk 1, reaching below-average values. In the large sizes, using Ran-
dom Walk 2, we can appreciate that the percentage is around 40% aproximately, whereas
in the normal ACOv0, the values are over 30%, and in the RW1 + ACOv0 the values are

Information Technology Engineer 71 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

around 20%. It is a decrease of percentage in a factor of 0.75 for ACOv0, and 0.5 for RW1
+ ACOv0 approximately.

Figure 5.11 shows the interaction between the performance variables and the relation
Version-Environment.

Figure 5.11: Biplot Random Walk Comparison. Explained: 85,9% + 13,2%

Figure 5.11 indicates the algorithm performance in terms of duration, exploration,
exploitation, and precision. Regarding the algorithm duration, the axes ET, EP, and
SR present high values in the ACOv0 alone. These results help us to confirm the past
results that state that ACOv0 spend a long time. However, the ACOv0 alone has the best
values of VNr, VEr, and PE, which indicates a high capacity of exploration. This quality,
therefore, could be causing the increase in time. On the other hand, we can state that the
Random Walk 1 and 2 has a better capacity of exploitation due their low values of VNr
and VEr. The accuracy has high values for the method which uses Random Walk 2. We
already analyze these results in Fig. 5.14. As in previous results, we can observe that the
variable PE has high values to the method ACOv0 alone, and then to the Random Walk
2. According to these results, we selected the Random Walk 2 for the graphical simulation
because it brings the best performance in most of the measures.

Information Technology Engineer 72 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

5.3 Evaluation of Local Interactions Performance
In the following experiments, we evaluated the performance of some variants of ACO
with different local interaction techniques. These versions were tested using several initial
configurations, and the best results were found implementing the following parameters:

Version φc A α β τ0 ρ δ RNk Vk

ACOv1 0.7 10 3 2 0 0.5 2 – –
ACOv2 0.7 15 3 2 10 0.3 2 3 –
ACOv3 0.7 15 3 2 0 0.25 2 3 –
ACOv4 0.7 15 3 2 10 0.3 2 – 2
ACOv5 0.7 15 3 2 0 0.25 2 – 2

Table 5.3: Parameters of Local Interations Experiments

Each experiment was executed n = 30 times, and the mean, median, possible outliers of
performance variables and biplot graphs were shown. Moreover, the aim of these variants
is responding to obstacles apparition. To this end, for each size, we pre-calculate a mesh
environment using the Kruskal’s Algorithm, Fig. 4.16. In this way, all the environment
sizes have a different amount of edges, according to the Table. 4.1.

Furthermore, according to experiments of ACOv0 and Random Walks, we observe that
the results of different terrain types do not have significant variability. In this sense, it is
not necessary to plot the results of different terrains. Therefore, in the following parts, we
presented graphs with summarized information of all the terrain types.

Figure 5.12 shows the relation between the execution time and the mesh size of the
several local interactions. According to these results, the fastest versions are the ACOv2
and ACOv4. On average, these versions has execution time close to 0ms, with values of
100ms approximately. This result indicates that the reduction of pheromones decreases the
possible stuck conditions faster than the other methods. The difference in time between
versions 2 and 4 is small because both are based on the same techniques, just using a dif-
ferent selection of edges. Although we expected that version 3 and 5 would be better than
version 1, the results show the opposite behavior. The next best version in the succession
is the ACOv1 which present results around to 1000ms approximately with large sizes. The
methods ACOv3 and ACOv5 bring the worst results which indicates an execution time
around 1500ms with large sizes. Besides, these versions present outliers with great vari-
ability; some values are around 8000ms to ACOv3, and ACOv5. These bad results could
be due to the use of the additional heuristic value, necrophoresis value κij. In this sense,
it seems that this value is increasing the time, instead of reducing; internally, they could
spend more time in access and store this value. In mean and median, with large sizes, the
ACOv2 and ACOv4 is 1000

100 = 10 times faster than ACOv1, and 1500
100 = 15 times faster than

ACOv3 and ACOv5.

Information Technology Engineer 73 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Local Interactions - Execution Time: n = 30, α = 3, β = 2, φ = 0.7
E

xe
cu

tio
n

Ti
m

e
(m

s)

A
C

O
v1

0
2000
4000
6000
8000

A
C

O
v2

0
2000
4000
6000
8000

A
C

O
v3

0
2000
4000
6000
8000

A
C

O
v4

0
2000
4000
6000
8000

A
C

O
v5

0
2000
4000
6000
8000

Size of Mesh
10 15 20 25 30

Figure 5.12: Local Interactions Comparison Execution Time

Moreover, in Fig. 5.12, we can observe that there is a smooth decrease between the
times of mesh 30 and 32. This leads us to think that versions tend to reduce in time
with larger environments. However, it is a wrong conclusion; the reason of this descent is
the number and configuration of the edges in the maze environment of Table. 4.1. These
results really tell us that it is easier to solve the random maze type of size 32 than the
maze of size 30.

Information Technology Engineer 74 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.13 shows the relation between episodes number and sizes of the mesh of each
local interaction version.

Local Interactions - Episodes: n = 30, α = 3, β = 2, φ = 0.7

E
pi

so
de

s
(i

te
ra

tio
n)

A
C

O
v1

0
500

1000
1500
2000

A
C

O
v2

0
500

1000
1500
2000

A
C

O
v3

0
2×104
3×104
4×104
5×104

A
C

O
v4

0
500

1000
1500
2000

A
C

O
v5

0
104

2×104
3×104
4×104
5×104

Size of Mesh
10 15 20 25 30

Figure 5.13: Local Interactions Comparison Episodes Number

These results indicate another notion of duration, which is related to the computational
complexity of the algorithm. In this graph, the versions with best results are ACOv2 and
ACOv4 with values around 500 episodes approximately with large mesh sizes. The values
of version 4 have slightly better results than version 2; however, for practical aims, both
results are considered similar. Later, we have the results of ACOv1 with values around
600 episodes approximately with large mesh sizes. In this version, we can observe a more
evident ascending behavior when we increment the size. This result tells us that using
version 1, the preconditions of the maze environment do not guarantee a faster solution
to the problem. Finally, we have the results of ACOv3 and ACOv5, which are the worse
values around 10000 episodes with large mesh sizes.

This measure gives a more accurate notion of the possible duration of the algorithm in
a long term (with larger sizes). In this sense, with large sizes, the ACOv2 and ACOv4 are
600
500 = 1.2 times faster than ACOv1, and 10000

500 = 20 faster than ACOv3, and ACOv5.

Information Technology Engineer 75 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Fig 5.14 shows the relation between the accuracy and the mesh sizes of the different
local interactions.

Local Interactions - Accuracy: n = 30, α = 3, β = 2, φ = 0.7

A
cc

ur
ac

y
(%

)

A
C

O
v1

30
50
60
70
80
90

100

A
C

O
v2

30
50
60
70
80
90

A
C

O
v3

40
60
70
80
90

A
C

O
v4

40
60
70
80
90

A
C

O
v5

40
50
60
70
80
90

Size of Mesh
10 15 20 25 30

Figure 5.14: Local Interactions Comparison Accuracy

According to these results, the first evident result is the high variability of the solutions
with different mesh sizes. There are some low values with small sizes and some high values
with large sizes. Besides, the values vary widely even in the same size experiments. For
example, using the environment size 24, the algorithm presents results around 40% ap-
proximately, which is a deficient value. This variability and low accuracies are an effect of
the initial conditions of the environment due to the maze environments. In the beginning,
we prepared these environments, adding some obstacles (deleting some edges) through a
Kruskal’ algorithm, Table. 4.1. For this reason, the number and locations of the remaining
edges are different in each case. Despite experimenting with different random mazes, the
algorithms should be capable of overcoming these changes and find accurate solutions in
all the cases. In this sense, we can state that the proposed local interactions are unstable.
Despite this instability, version 1 presents the best results with values up 70% in most of
the cases.

Furthermore, the bad results in accuracy counter the great results of duration. In this
sense, we can not consider a method that is so fast but return worst results. Therefore,
in order to get the Final ACO version, we priorities precision over the duration. Despite

Information Technology Engineer 76 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

these results, we did other analysis to reinforce this conclusion in Fig. 5.15 and 5.16.

Figure 5.15 shows the relation between the percentage of environment learned and mesh
sizes.

Local Interactions - Percentage of Environment Learned: n = 30, α = 3, β = 2, φ = 0.7

Pe
rc

en
ta

ge
 o

f E
nv

iro
nm

en
t L

ea
rn

ed
 (%

)

A
C

O
v1

0
20
30
40
50
60
70

A
C

O
v2

0
20
30
40
50

A
C

O
v3

0
10
15
20
25

A
C

O
v4

0
20
30
40
50

A
C

O
v5

0
5

10
15
20
25
30

Size of Mesh
10 15 20 25 30

Figure 5.15: Local Interactions Comparison Percentage Environment Learned

The results presented in Fig. 5.15 also show a high variability. We again can observe
uncertain behavior in small and large sizes. However, in this case, the results are lower
than the accuracy results. In general, the percentage reaches values of 5% in the worst
cases, which indicates low exploration capacity. This worse feature could explain the low
accuracy of solutions, Fig 5.14. By the bad exploration, the algorithm does not visit many
places of the environment, which provokes that the ants only can move in a reduced space.
Probably, this space does not contain optimal or close to optimal solutions. In this way,
we can not expect to get precise solutions.

Despite these bad results, we could analyze the best version. The version with the
most percentage of the environment learned is ACOv1, which presents results around 15%
approximately. The next best version are ACOv2 and ACOv4, and finally ACOv3 and
ACOv5. The ACOv1 appears to have the best solutions because its associated method
allows that the ants tend to visit more places, in comparison with the other techniques.

Information Technology Engineer 77 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

The biplot of Fig. 5.16, shows the interaction of the variables and the relation Version-
Terrain.

Figure 5.16: Biplot Local Interactions Comparison. Explained: 60,2% + 34,0%

In this graph, we can analyze at the same time, the characteristics of duration, explo-
ration, exploitation, and accuracy. Regarding the duration feature, the results confirm the
results of Fig. 5.12 and 5.13. Thus, the method with high values of EP, ET, and SR are
ACOv3 and ACOv5. Then, the fast methods are the ACOv1, ACOv2 and ACOv4, which
presents similar values. In terms of exploration and exploitation, the version ACOv1 has
the best values of VEr, VNr, and PE. This result could be due to the strategy of forbidden
nodes. Using this dynamic, the ants must visit more places, and therefore more nodes and
edges. Finally, analyzing the accuracy, we found that the worse results are in the methods
ACOv2 and ACOv4, whereas the best results are in ACOv1. These results could be due
to the versions 2 and 4 applies a reduction of pheromones over the principal deposit. This
reduction could affect the algorithm convergence and avoid to get proper solutions.

Moreover, another result that we can observe is the association between variables. There
is overlapping with the variables VEr and VNr. This result indicates that these measures
behave in the same way, and could be replaced by a unique variable. The same happens
with the variables SR and EP, which are almost overlapped. However, this overlap could
be due to a condition of cause-effect because a high number of stuck roads can cause a high

Information Technology Engineer 78 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

number of episodes.The precision, duration, exploration, and exploitation results go along
with the previous results. Nevertheless, by studying Fig. 5.14 and 5.15, we can conclude
that, in general, the local interaction proposals are unstable.

5.4 Evaluation of Several Methods
In the following experiments, we evaluated the performance of four different methods for
path planning solving. In this part, we decided to use, for the final version, the Random
Walk 2 and ACOv0 because this combination presents better performance results in terms
of duration and precision. Besides, the exploitation is higher that the exploration in this
final version. In this sense, we priorities duration, then precision, later exploitation, and
exploration finally. Furthermore, this final version can deal successfully with environments
with obstacles, as long as the number of obstacles does not increase drastically (partially
free environment).

These experiments were tested using several initial configurations, and the best results
were found implementing the following parameters in some of the methods:

ACO Final φc = 0.7 A = 15 α = 3 β = 2 τ0 = 0 ρ = 0.5
Genetic φc = 0.5 ni = 20 ρs = 0.4 ρm = 0.8 ωe = 0.7 ωn = 0.8
Dijkstra No use parameters

A* h(vc) = ν(vc, vf) Preprocessed heuristic - Proximity

Table 5.4: Several Methods Initial Parameters or Preprocessed Information

Each experiment was executed n = 30 times, and the mean, median, and possible
outliers of performance variables were shown. Furthermore, the following experiments
consisted of two stages. In the first stage, all the methods were executed in an environ-
ment without any obstacle. The route found in this phase was called Route 1. In the
second stage, some obstacles were added in specific places trying to cover the previous
optimal routes. The route found in this phase was called Route 2.

Information Technology Engineer 79 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 5.17 shows the relation between the accuracy and mesh size of different methods
of path planning.

Accuracy: n = 30, ants = 15, α = 3, β = 2, τ0 = 0, ρ = 0.5, φc = 0.7

A
cc

ur
ac

y
(%

)

A
C

O
 F

in
al

 R

ou
te

 1

60
70

80

90

100

G
en

et
ic

R
ou

te
 1

87.5
90

92.5
95

97.5
100

A
C

O
 F

in
al

 R

ou
te

 2

60
70

80

90
100

G
en

et
ic

R

ou
te

 2

85
87.5

90
92.5

95
97.5

Size of Mesh
10 20 30 40 50

Figure 5.17: Accuracy Comparison of Different Methods of Path Planning

In this part, it is essential to consider that the methods A* and Dijkstra have an ac-
curacy of 100%. For this reason, we do not graph this measure. A result of more interest
is the comparison with the Genetic algorithm, which, as well as the ACO algorithm, does
not always get the optimal solution. On the one hand, in Figure 5.17, the Genetic algo-
rithm has an accuracy upon 85% in Route 1 and upon 87.5% in Route 2, and a mean
and median upon 95% approximately. On the other hand, we can observe a high variabil-
ity in the ACO solutions with accuracy measurements upon 60% in Route 1 and Route
2, and mean and median upon the 95%. According to these results, we can state that
the general accuracy of the Genetic algorithm is better than the ACO algorithm in the
Route 1 and Route 2, in terms of variability. However, both methods conserve a mean
and median over the 95%, because they get solutions close to the optimal solution sev-
eral times. Besides, if we analyze the Route 2 of the Genetic Algorithm, we can detect
a marked decrease behavior as the size increases. This result could indicate future worst
accuracy with some largest sizes. The ACO algorithm seems not to present this marked
behavior; its mean and median are almost constant with accuracy over 95% approximately.

Information Technology Engineer 80 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

In Figure 5.18, we can see the relation between the size of mesh and execution time of
the first finding route of several path planning methods, Route 1.

Execution Time Route 1: n = 30, ants = 15, α = 3, β = 2, τ0 = 0, ρ = 0.5, φc = 0.7

E
xe

cu
tio

n
Ti

m
e

(m
s)

A
C

O
 F

in
al

0
10
20
30
40
50

G
en

et
ic

0
10
20
30
40
50

D
ijk

st
ra

0
10
20
30
40
50

A
 S

ta
r

0
10
20
30
40
50

Size of Mesh
10 20 30 40 50

Figure 5.18: Route 1. Execution Time Comparison of Different Methods of Path Planning

According to these results, the execution time of the ACO algorithm is under 7.5 ms
in mean and median with the largest sizes. Moreover, outliers values do not exceed 30 ms.
Then, in the Genetic algorithm, we can observe an execution time, in mean and median,
around 18 ms with the largest sizes. However, these values are more scattered, reaching in
some cases values of 60 ms or 70 ms. The results of the Dijkstra algorithm show a marked
increasing behavior, reaching values around 20 ms, and in mean and median under 12.5
ms with the largest sizes. It is expected behavior due to the nature of the algorithm,
which analyzed all the nodes, Chapter 3. As the Dijkstra algorithm, the A* algorithm also
presents a marked increasing behavior, and the values of mean, median, and outliers are
only a little less than the Dijkstra values. On mean, and median, the values are around
11.5 ms with largest sizes, and the outliers get values of 22.5 in some cases. It could indi-
cate that the selected heuristic, proximity Equation 4.1, does not contribute substantially
to a faster finding of the solution. Based on these estimated values, we can state that the
ACO algorithm has the best performance of execution time. In fact, on mean and median,
the ACO solutions are faster in a factor of 18

7.5 = 2.4 than Genetic algorithm, 12.5
7.5 = 1.67

than Dijkstra algorithm, and 11.5
7.5 = 1.53 than the A* algorithm. This outstanding result

Information Technology Engineer 81 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

is an advantage over the other algorithms and compensates the variability of the accuracy
results, Fig. 5.17.

Figure 5.19 shows the relation between the size of the mesh and the execution time
spent to find a new route with the presence of obstacles in the environment, Route 2.

Execution Time Route 2: n = 30, ants = 15, α = 3, β = 2, τ0 = 0, ρ = 0.5, φc = 0.7

E
xe

cu
tio

n
Ti

m
e

(m
s)

A
C

O
 F

in
al

0
10
20
30
40
50

G
en

et
ic

0
50

100
150
200
250

D
ijk

st
ra

0
10
20
30
40
50

A
 S

ta
r

0
10
20
30
40
50

Size of Mesh
10 20 30 40 50

Figure 5.19: Route 2. Rerouting Time Comparison of Different Methods of Path Planning.

According to these results, the ACO algorithm finds a new route in an execution time
around 10 ms using the largest sizes. Besides, some of its outliers reach values of only
around to 30 ms. Then, the Genetic algorithm has mean and median execution times
around 25 ms approximately using the largest mesh sizes and has outliers up to 250 ms.
The Dijkstra and A* algorithms reach similar values of mean and median around 15 ms
with the largest sizes and maximum outliers around 25 ms. All these results state that the
ACO algorithm finds a new route in less time in comparison with the other methods. In
this sense, the ACO solutions is faster in a factor of 25

10 = 2.5 than the Genetic algorithm,
and 15

10 = 1.5 than the Dijkstra and A* algorithm.

Despite these excellent results, the time of this new execution is not less than the
first route found. The ACO algorithm can store information about pheromones and use
it to find a new route. Therefore, we expected that these pheromones would speed up

Information Technology Engineer 82 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

the searching process. However, the performance values are almost similar to previous
experiments, Fig 5.18. These values could indicate that future results with larger sizes can
be similar. Nevertheless, the used mesh sizes return low execution times (milliseconds),
which could be an inadequate extrapolation of the behavior with larger sizes. Thus, we
can state that it is an unfinished result because we can not show with great certainty that
the pheromones speed up the rerouting process or not.

Some conclusions could carry us to interpret that this comparison is not well-founded
because we are comparing path planning methods of type one to one (ACO, Genetic)
with type one to many (Dijkstra, A*). However, we mentioned in previous experiments,
Section 4.2, that the nature of the ACO algorithm allows us to get an alternative result,
the Percentage of Environment Learned. This result partially solves the path planning one
to many. In that way, we could define this ACO algorithm as a one to one method and
quasi one to many method. This definition tells us that it is not unreasonable to perform
this comparison.

5.5 Qualitative Evaluation of Graphic Simulation

(a) Environment Mesh (b) Graph Mesh

Figure 5.20: Environment Configuration in Graphical Simulation

In this section, we use the best performance variant, Random Walk 2, and ACOv0. In this
sense, the graphic simulation implements three-dimensional mesh based on a landscape
terrain, Fig. 5.20. We used some concatenation of Perlin noise based on [47] to develop
the environment mesh. Figure 5.21 shows the adaptability behavior of the algorithm in
an environment without obstacles. In Figure 5.21a, the ants perform the random walk
together. Then, in Figure 5.21b, the ants converge to a specific path. Later, in Figure
5.21c, an obstacle is added, and the ants get stuck. Finally, in Figure 5.21d, the ants
achieve to find another route. The proposed algorithm reaches this behavior because it
can use the information of pheromones for rerouting the ants. In other words, it does not
need a new execution; it responses in real-time to the addition of obstacles.

Information Technology Engineer 83 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

(a) Random Walk Phase (b) Route 1

(c) Obstacle Addition and Killed Ants (d) Rerouting Phase or Route 2.

Figure 5.21: Graphic Simulation Screenshots

5.6 General Results
In this chapter, we incrementally presented the results. All these results showed a great
performance when the algorithms work with small mesh sizes. Therefore, most of the
analysis focused on the result with larger sizes. In the first experiments, we study the
performance of the basic algorithm ACOv0. Although the algorithm achieves to converge,
the solutions with large sizes present low-performance results, Fig. 5.1, 5.2, 5.3, 5.4.

In order to improve the ACOv0 results, we introduce two different global interactions,
know as Random Walks. The random walks substantially improved the performance of the
ACOv0 in terms of duration, and precision. In these experiments, we found that the Ran-

Information Technology Engineer 84 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

dom Walk 2 results in better performance values of execution time, episodes, and accuracy.
Besides, according to the biplot results, Fig. 5.11, the Random Walks experiments have a
high capacity of exploitation; in other words, they have low values of VNr, VEr, and PE.
Table 5.5, we can observe the predominance of each variant. In this sense, we subsequently
selected the combination RW2 + ACOv0 for comparing with other path planning methods.

Feature Variables High Medium Low
Duration ET, EP, SR ACOv0 RW1 + ACOv0 RW2 + ACOv0

Precision
AC RW2 + ACOv0 RW1 + ACOv0 ACOv0
PE RW2 + ACOv0 ACOv0 RW1 + ACOv0

Exploration ER, VNr, VEr ACOv0 RW1 + ACOv0 RW2 + ACOv0
Exploitation ER, VNr, VEr RW2 + ACOv0 RW1 + ACOv0 ACOv0

Table 5.5: Best Result of Global Interactions Experiments

In the next experiments, we decided to add obstacles in the form of a maze. Thus, we
find that the random walks are not enough to find the solutions because the ants tend to get
stuck several times and do not converge to a solution. For these reasons, we implemented
some local interactions which control the stuck conditions. In this part, we developed five
versions of these local interactions for comparing and get the best. Thus, we found that
ACOv1 produces the best accuracy values. The ACOv2 and ACOv4 methods have the best
values of execution time and episodes. Besides, according to Fig. 5.16, the ACOv1 presents
a great exploration ability, the ACOv5 and ACOv3 last longer times, and theACOv2 and
ACOv4 have the worst accuracy. In Table 5.6, we can observe the predominance of each
version. Nevertheless, in general, all the local interactions present a bad accuracy and per-
centage of environment learned with high levels of variability. These results indicate that
the local interactions are unstable techniques which can not solve in the same way different
maze environments. For these reasons, we avoided to use these methods to the final version.

Feature Variables High Medium Low
Duration ET, EP, SR ACOv3 - ACOv5 ACOv1 ACOv2 - ACOv4

Precision
AC ACOv1 ACOv3 - ACOv5 ACOv2 - ACOv4
PE ACOv1 ACOv2 - ACOv4 ACOv3 - ACOv5

Exploration ER, VNr, VEr ACOv1 ACOv2 - ACOv4 ACOv3 - ACOv5
Exploitation ER, VNr, VEr ACOv3 - ACOv5 ACOv2 - ACOv4 ACOv1

Table 5.6: Best Result of Local Interactions Experiments

Then we compared different methods of path planing with our ACO Final proposal. In
these experiments, we decided to work with Random Walk 2 and ACOv0, which presents
better performance values. Moreover, this combination can deal with environments with

Information Technology Engineer 85 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

obstacles, as long as they do not increase drastically. We did not use any local interactions
because, despite the local interactions achieve to converge, they do not result in accurate
performance values. In this way, it is recommendable to improve these techniques in future
works. In this comparison, we found that our final proposal reaches an acceptable accu-
racy over 95% in the first and second routing stages. However, other methods have minor
variability in its accuracy. Despite these results, our proposal compensates the variable
accuracy with low execution times in the first and second routing stages. In Table 5.7, we
can observe the predominance of each method.

Feature Variables High Medium High Medium Low Low
Duration ET, RT Dijkstra A* Genetic ACO Final
Precision AC Genetic ACO Final – –

Table 5.7: Best Result for Several Methods Comparison

Finally, in the simulation stage, we found some qualitative results, Fig. 5.21, which
indicates the adaptability behavior of our ACO algorithm. Besides, these results suggest
an idea of the possible applications of this work in real-life based simulations.

Information Technology Engineer 86 Final Grade Project

Chapter 6

Conclusions

6.1 Conclusion
In this thesis, we proposed a path planning model based on the Ant Colony Optimization
algorithm. For designing this model, we implemented a basic ACO algorithm that con-
verged using the proposed data sets. Nevertheless, its performance measures were deficient.
For this reason, we included global and local interactions that improve the performance of
the basic algorithm. Then, we compared the best variant of the model with other methods
for having an idea of its usability. Finally, we performed a graphic simulation based on
the final model. It is essential to mention that several preliminary results of this work
were presented in the 6th IEEE Latin American Conference on Computational Intelligence
LA-CCI with the paper titled ”Three Dimensional Adaptive Path Planning Simulation
Based On Ant Colony Optimization Algorithm” (Waiting for Publication).

The global interaction experiments showed that the variant: Random Walk 2 plus
ACOv0 produces the best performance results and can deal with environments with ob-
stacles, as long as they do not increase drastically. Conversely, in local interactions experi-
ments, we found that although the algorithms converge, the solutions had low performance.
Therefore, we did not include this interaction in the ACO final version. By comparing our
version with other methods, the results suggested that the Final ACO version has an
acceptable accuracy with values above 95%. Nevertheless, our proposal presented more
variable accuracy results comparing with other methods. This loss of accuracy was com-
pensated with the low execution time, with values around 10ms in the first and second
stages of routing.

On the other hand, we concluded that the usefulness of the pheromone trails is limited
for our problem size since the execution with more nodes and edges generates solutions
with more variability. Another conclusion was the generation of an additional result known
as the percentage of the environment learned. By the nature of the ACO algorithm, the
ants could find other solutions in the environment, solving partially the path planning
problem many to one. These solutions were useful results but not necessary because the
aim of this project was solving the path planning problem one to one.

87

School of Mathematical and Computational Sciences YACHAY TECH

Finally, the qualitative results of the graphic simulation showed the adequate adaptive
behavior of our proposal. The ants were entirely able to find a new route, using the
pheromones, when the obstacles were introduced in execution time.

6.2 Recommendations
In this part, we list some recommendations based on the problems and limitations found
in our model proposal.

• Implement an adequate representation of the environment with the use of graphs and
data structures. For example, the algorithm could use an adjacency matrix or list to
store the heuristic and pheromones values. Besides, instead of graphs, we could use
another environment representation based on the application. For example, we can
use cells decomposition for robot motion applications [13] [1].

• Establish an incremental style for designing an algorithm based on Ant Colony Op-
timization. In this way, it is possible to analyze the possible errors and limitations
and deal with them as we add new features.

• Prove different heuristic measures for the movement choice technique, Equation 4.2,
and establish a useful heuristic based on the problem.

• Establish an adequate frequency of evaporation and reinforcement, as well as the ∆τ
value according to the problem circumstances.

• In the design stage, we recommend implementing a rank of values for each parameter.
Then, we suggest to prove them for selecting the parameters with the best results.

• The ACO algorithm is quite influenced by the correct implementation of its principal
features: the movement choice, reinforcement, evaporation, and the initial param-
eters, as well as the local and global interactions in our proposal. For this reason,
we recommend use sizes around [30, 35] in the design stage, neither far too large
nor too small. The last interval is because the experiments with small mesh could
imply bad predictions in the long term, but the larger sizes spend much time. We
should work with a manipulable environment for establishing adequate methods for
the main features of the algorithm.

• For the implementation of the several variants of our proposal, we recommend to
develop the algorithm with separated functions. This programming technique will
allow reusing parts of the code in the other variants.

• In the experiments with maze environments, we recommend searching an easy way
to see how it is the composition of the maze for analyzing and detect possible stuck
conditions.

• In the methods comparison stage, we recommend using some already implemented
algorithm instead of self implementations. These could give us a better idea of the
performance of our proposal.

Information Technology Engineer 88 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

6.3 Future Work
In this part, we propose some future research and implementation, which could be taken
into account in future works.

• High-Performance Computing with more Massive Data Sets. The perfor-
mance values calculated using large environments are results of interest because it can
give us a prediction of results on a grand scale. In the present work, this scalability
quality has been partially studied because we have worked with several mesh sizes,
and some variants have shown unfinished results yet. For this reason, we propose to
develop more experiments with larger mesh sizes to study the scalability performance
of the algorithm. In this way, it would be necessary to implement the algorithm in
a programming language that supports the use of high-performance computers such
as C, C++, or Python.

• Parallelization of the Ant Colony Optimization Algorithm. The present
project proposed some variants which implement sequential algorithms where the
ants perform a walking one by one. However, the basic idea of the Ant Colony Opti-
mization algorithm is substantially parallel; therefore, the algorithm should be easily
paralleled. This parallelization can give us some advantages over other algorithms in
terms of execution time. For this reason, another propose is designing some variants
of paralleled algorithms that can deal with the path planning problem.

• Proposal or Review of Methods for Solving Maze Environments. The
present proposal shows some advantages over other algorithms. However, when we
tried to analyzed environments with many obstacles, the algorithm produces solutions
with low performance, particularly in large maze environments. For this reason, it is
necessary to seek other techniques to deal with the maze environments or review the
proposed techniques to design a better implementation.

• Comparison with other Adaptive Methods. The present project performs a
comparison between the ACO, Genetic, Dijkstra, and A* algorithm. This analysis
indicates that the ACO algorithm has acceptable performance results. However, its
adaptability feature has not been wholly studied because we only do a qualitative
representation in the graphic simulation. For this reason, a new comparison with
other methods could take place. This comparison should help to detect the level of
adaptability of our proposal. We found some steps that follow this research direction
in [48].

• Research a better Implementation of Necrophoresis Value κij. The pro-
posed idea of simulating the Necrophoresis natural behavior of the ants is promising.
The ideas discussed in this project could benefit from the integration of the idea of
Necrophoresis. We recommend designing another technique that can deal with this
behavior in a better way.

Information Technology Engineer 89 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Information Technology Engineer 90 Final Grade Project

Bibliography

[1] G. Klančar, A. Zdešar, S. Blažič, and I. Škrjanc, “Path planning,” in
Wheeled Mobile Robotics. Elsevier, 2017, pp. 161–206. [Online]. Available:
https://doi.org/10.1016/b978-0-12-804204-5.00004-4

[2] Yanrong Hu and S. Yang, “A knowledge based genetic algorithm for path planning of
a mobile robot,” no. April, pp. 4350–4355 Vol.5, 2004.

[3] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited„ 2016.

[4] L. Juntao, D. Tingting, L. Yuanyuan, and H. Yan, “Study on robot path
collision avoidance planning based on the improved ant colony algorithm,” in 2016
8th International Conference on Intelligent Human-Machine Systems and Cybernetics
(IHMSC). IEEE, Aug. 2016. [Online]. Available: https://doi.org/10.1109/ihmsc.
2016.215

[5] A. Tuncer and M. Yildirim, “Dynamic path planning of mobile robots with improved
genetic algorithm,” Computers & Electrical Engineering, vol. 38, no. 6, pp. 1564–1572,
Nov. 2012. [Online]. Available: https://doi.org/10.1016/j.compeleceng.2012.06.016

[6] I. Engedy and G. Horvath, “Artificial neural network based mobile robot navigation,”
in 2009 IEEE International Symposium on Intelligent Signal Processing. IEEE, Aug.
2009. [Online]. Available: https://doi.org/10.1109/wisp.2009.5286557

[7] K. Makantasis, M. Kontorinaki, and I. Nikolos, “A Deep Reinforcement Learning
Based Driving Policy for Autonomous Road Vehicles.” pp. 1–17, 2019.

[8] C. Eyckelhof, M. Dorigo, G. Caro Di, M. Snoek, and M. Sampels, “Ant systems for a
dynamic tsp - ants caught in a traffic jam,” 2002, pp. 88–99, imported from HMI.

[9] M. E. Yuksel, “Agent-based evacuation modeling with multiple exits using
NeuroEvolution of augmenting topologies,” Advanced Engineering Informatics, vol. 35,
pp. 30–55, Jan. 2018. [Online]. Available: https://doi.org/10.1016/j.aei.2017.11.003

[10] M. Liu, F. Zhang, Y. Ma, H. R. Pota, and W. Shen, “Evacuation path
optimization based on quantum ant colony algorithm,” Advanced Engineering
Informatics, vol. 30, no. 3, pp. 259–267, Aug. 2016. [Online]. Available:
https://doi.org/10.1016/j.aei.2016.04.005

91

https://doi.org/10.1016/b978-0-12-804204-5.00004-4
https://doi.org/10.1109/ihmsc.2016.215
https://doi.org/10.1109/ihmsc.2016.215
https://doi.org/10.1016/j.compeleceng.2012.06.016
https://doi.org/10.1109/wisp.2009.5286557
https://doi.org/10.1016/j.aei.2017.11.003
https://doi.org/10.1016/j.aei.2016.04.005

School of Mathematical and Computational Sciences YACHAY TECH

[11] C. W. Reynolds, “Steering behaviors for autonomous characters,” in Game developers
conference, vol. 1999. Citeseer, 1999, pp. 763–782.

[12] W. A. Enezi and C. Verbrugge, “Offline grid-based coverage path planning for guards
in games,” 2020.

[13] P. Yap, “Grid-based path-finding,” in Conference of the Canadian Society for Com-
putational Studies of Intelligence. Springer, 2002, pp. 44–55.

[14] E. Alba and F. Chicano, “Acohg: Dealing with huge graphs,” in Proceedings of the
9th annual conference on Genetic and evolutionary computation. ACM, 2007, pp.
10–17.

[15] S. Hong, “Lazier graph-based path planning for autonomous navigation,” Aug. 21
2018, uS Patent 10,054,447.

[16] B. Dugarjav, S.-G. Lee, D. Kim, J. H. Kim, and N. Y. Chong, “Scan matching on-
line cell decomposition for coverage path planning in an unknown environment,” In-
ternational journal of precision engineering and manufacturing, vol. 14, no. 9, pp.
1551–1558, 2013.

[17] F. Lingelbach, “On probabilistic completeness of probabilistic cell decomposition,”
CoRR, vol. abs/1507.03727, 2015. [Online]. Available: http://arxiv.org/abs/1507.
03727

[18] M. Candeloro, A. M. Lekkas, and A. J. Sørensen, “A voronoi-diagram-based dynamic
path-planning system for underactuated marine vessels,” Control Engineering Prac-
tice, vol. 61, pp. 41–54, 2017.

[19] T. Petković, D. Puljiz, I. Marković, and B. Hein, “Human Intention Estimation based
on Hidden Markov Model Motion Validation for Safe Flexible Robotized Warehouses,”
arXiv e-prints, p. arXiv:1811.08269, Nov 2018.

[20] P. Oettershagen, F. Achermann, B. Müller, D. Schneider, and R. Siegwart, “Towards
fully environment-aware uavs: Real-time path planning with online 3d wind field
prediction in complex terrain,” CoRR, vol. abs/1712.03608, 2017. [Online]. Available:
http://arxiv.org/abs/1712.03608

[21] Y.-b. Chen, G.-c. Luo, Y.-s. Mei, J.-q. Yu, and X.-l. Su, “Uav path planning using
artificial potential field method updated by optimal control theory,” International
Journal of Systems Science, vol. 47, no. 6, pp. 1407–1420, 2016.

[22] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” 1998.

[23] H. Zhai, M. Egerstedt, and H. Zhou, “Path Planning in Unknown Environments Using
Optimal Transport Theory,” arXiv e-prints, p. arXiv:1909.11235, Sep 2019.

[24] M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-heuristic,” in
Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No.
99TH8406), vol. 2. IEEE, 1999, pp. 1470–1477.

Information Technology Engineer 92 Final Grade Project

http://arxiv.org/abs/1507.03727
http://arxiv.org/abs/1507.03727
http://arxiv.org/abs/1712.03608

School of Mathematical and Computational Sciences YACHAY TECH

[25] M. Glabowski, B. Musznicki, P. Nowak, and P. Zwierzykowski, “Shortest path prob-
lem solving based on ant colony optimization metaheuristic,” Image Processing &
Communications, vol. 17, no. 1-2, pp. 7–17, 2012.

[26] M. Dorigo, “Optimization, learning and natural algorithms,” PhD Thesis, Politecnico
di Milano, 1992.

[27] D. Angus, “Solving a unique Shortest Path problem using ant colony optimisation,”
Communicated by T. Baeck, no. January, pp. 1–26.

[28] S. Zhang and R. Zhang, “Radio Map Based 3D Path Planning for Cellular-Connected
UAV,” arXiv e-prints, p. arXiv:1912.00021, Nov 2019.

[29] Y. Li, T. Dong, M. Bikdash, and Y.-D. Song, “Path planning for unmanned vehicles
using ant colony optimization on a dynamic voronoi diagram.” in IC-AI, 2005, pp.
716–721.

[30] Y. Rasekhipour, A. Khajepour, S.-K. Chen, and B. Litkouhi, “A potential field-based
model predictive path-planning controller for autonomous road vehicles,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 18, no. 5, pp. 1255–1267, 2016.

[31] A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis, J. Davidson, and L. Tapia,
“PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learn-
ing and Sampling-based Planning,” arXiv e-prints, p. arXiv:1710.03937, Oct 2017.

[32] D. Marco and T. Stützle, “Ant colony optimization the mit press,” Cambridge, Mas-
sachusetts, 2004.

[33] J. Trejos-Zelaya, L. E. Amaya-Briceño, A. Jiménez-Romero, A. Murillo-Fernández,
E. Piza-Volio, and M. Villalobos-Arias, “Clustering Binary Data by Application of
Combinatorial Optimization Heuristics,” arXiv e-prints, p. arXiv:2001.01809, Jan
2019.

[34] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an ant colony
optimization algorithm,” IEEE transactions on evolutionary computation, vol. 6, no. 4,
pp. 321–332, 2002.

[35] P. Wang, Y. Zhang, and D. Yan, “An improved self-adaptive ant colony algorithm
based on genetic strategy for the traveling salesman problem.” Author(s), 2018.
[Online]. Available: https://doi.org/10.1063/1.5039120

[36] T. Stiitzle and H. Hoos, “The max-min ant system and local search for the traveling
salesman problem,” in Proceedings of IEEE international conference on evolutionary
computation, 1997, pp. 309–314.

[37] T. Stützle and H. H. Hoos, “Max–min ant system,” Future generation computer sys-
tems, vol. 16, no. 8, pp. 889–914, 2000.

[38] E. W. Dijkstra et al., “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

Information Technology Engineer 93 Final Grade Project

https://doi.org/10.1063/1.5039120

School of Mathematical and Computational Sciences YACHAY TECH

[39] A. Levitin, Introduction To Design And Analysis Of Algorithms, 2/E. Pearson Edu-
cation India, 2008.

[40] R. E. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42, no. 2-3,
pp. 189–211, Mar. 1990. [Online]. Available: https://doi.org/10.1016/0004-3702(90)
90054-4

[41] V. Bulitko and G. Lee, “Learning in Real-Time Search: A Unifying Framework,”
arXiv e-prints, p. arXiv:1110.4076, Sep 2011.

[42] D. Sudholt and C. Thyssen, “Running time analysis of ant colony optimization for
shortest path problems,” Journal of Discrete Algorithms, vol. 10, pp. 165–180, Jan.
2012. [Online]. Available: https://doi.org/10.1016/j.jda.2011.06.002

[43] G. O. López-Riquelme, M. L. Fanjul-Moles et al., “The funeral ways of social insects.
social strategies for corpse disposal,” Trends Entomol, vol. 9, pp. 71–129, 2013.

[44] Ton Roosendaal and Blender Fundation, “Ant landscape manual.” [Online]. Available:
https://docs.blender.org/manual/fr/dev/addons/add mesh/ant landscape.html

[45] J. Buck, Mazes for programmers: code your own twisty little passages. Pragmatic
Bookshelf, 2015.

[46] A. C. Rencher and W. F. Christensen, Methods of Multivariate Analysis. John Wiley
& Sons, Inc., Jul. 2012. [Online]. Available: https://doi.org/10.1002/9781118391686

[47] S. Lague. Procedural landmass generation. Youtube. [On-
line]. Available: https://www.youtube.com/watch?v=wbpMiKiSKm8&list=PLFt
AvWsXl0eBW2EiBtl sxmDtSgZBxB3

[48] C. Horoba and D. Sudholt, “Ant colony optimization for stochastic shortest
path problems,” in Proceedings of the 12th annual conference on Genetic and
evolutionary computation - GECCO 10. ACM Press, 2010. [Online]. Available:
https://doi.org/10.1145/1830483.1830750

Information Technology Engineer 94 Final Grade Project

https://doi.org/10.1016/0004-3702(90)90054-4
https://doi.org/10.1016/0004-3702(90)90054-4
https://doi.org/10.1016/j.jda.2011.06.002
https://docs.blender.org/manual/fr/dev/addons/add_mesh/ant_landscape.html
https://doi.org/10.1002/9781118391686
https://www.youtube.com/watch?v=wbpMiKiSKm8&list=PLFt_AvWsXl0eBW2EiBtl_sxmDtSgZBxB3
https://www.youtube.com/watch?v=wbpMiKiSKm8&list=PLFt_AvWsXl0eBW2EiBtl_sxmDtSgZBxB3
https://doi.org/10.1145/1830483.1830750

Appendices

95

School of Mathematical and Computational Sciences YACHAY TECH

Appendix 1. Implementation Details

Basic Loop of ACO Algorithm

1 public void ExecuteACO (ref MeshEnvironment env)

2 {

3 // Create a list of ants

4 List <FinalAntv0 > colony = CreateColony ();

5

6 //No init , use the stored values // In some version , we use it

7 // env. InitPheromones (tau_0);

8

9 // Variables to control evaporation and convergence

10 bool almost_one_route = false;

11 bool converge = false;

12

13 // Time Variable

14 var watch = System . Diagnostics . Stopwatch . StartNew ();

15

16 while (! converge)

17 {

18 foreach (var ant in colony)

19 {

20 // Try to find a possible route

21 List <int > route = ant. FindRoute (ref env);

22

23 //If the ant finds a route

24 if (route.Count != 0)

25 {

26

27 // Reinforce the route

28 Reinforcement (ref env , ref route);

29

30 // Almost one route per episode

31 almost_one_route = true;

32

33 // Check and set if the best cost changed

34 CheckAndSetBestCost (ref env , ref route);

35

36 }

37

38 }

39

40 // Reset the visited nodes

Information Technology Engineer 97 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

41 env. ResetNodes ();

42

43 if (almost_one_route)

44 {

45 // Evaporation on the environment

46 Evaporation (ref env);

47 almost_one_route = false;

48 }

49

50 converge = CheckConvergence (ref colony , ref env);

51

52 // Episodes

53 episode_counter ++;

54

55 }

56

57 // Execution Time

58 watch.Stop ();

59 execution_time += watch. ElapsedMilliseconds ;

60 colony_ants = colony ;

61

62 }

Reinforcement

1 // ---

2 public void DeltaTau (ref MeshEnvironment env , ref List <int > route)

3 {

4 // Calculate the Delta Tau according to the best cost so far.

5 if (best_cost != Double . MaxValue)

6 {

7 Double current_cost = ExtraTools . GetCost (ref route , ref env);

8 delta_tau = best_cost / current_cost ;

9 }

10

11 }

12 // ---

13 public void Reinforcement (ref MeshEnvironment env , ref List <int > route

)

14 {

15 for (int i = 0; i < route.Count - 1; i++)

16 {

17 // Iteration by each pair of nodes

18 int node1_idx = route[i];

Information Technology Engineer 98 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

19 int node2_idx = route[i + 1];

20

21 // Select the associated edge

22 int index = env.world[node1_idx]. neighboors . IndexOf (node2_idx)

;

23 int edge_idx = env.world[node1_idx]. edges[index];

24

25 // Change the delta tau according to the current cost and the

best cost so far

26 DeltaTau (ref env , ref route);

27

28 // Reinforce the route , delta_tau is a global variable

29 env.edges[edge_idx]. pheromone_amount += delta_tau ;

30

31 }

32 }

Evaporation

1 // ---

2 // Evaporation Function

3

4 public void Evaporation (ref MeshEnvironment env)

5 {

6 // Loop around all the edges list. Reduce the pheromone according

the p value.

7 for (int i = 0; i < env.edges.Count; i++)

8 {

9 env.edges[i]. pheromone_amount = env.edges[i]. pheromone_amount

* (1 - evaporation_factor);

10 }

11 }

Find Route Process of an Ant

1 // ---

2 public List <int > FindRoute (ref MeshEnvironment env)

3 {

4 // Variable to store the route

5 List <int > route = new List <int >();

6 route.Add(env. start_node);

7

8 // Variable to detect a feasible route

9 bool found_route = false;

Information Technology Engineer 99 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

10

11 int current_node = env. start_node ;

12 while (! found_route)

13 {

14 // Select the node according the movement choice technique

15 int next_node = SelectNextNode (ref env , current_node);

16

17 //If the movement is possible

18 if (next_node != -1)

19 {

20 // Add the new node and change the current node

21 route.Add(next_node);

22 current_node = next_node ;

23 }

24 else

25 {

26 // Otherwise the ant gets stuck

27 break;

28 }

29

30 //If we find the target node , we break the loop

31 found_route = current_node == env. final_node ;

32 }

33

34 if (found_route)

35 {

36 // Store some critical information in the current ant

37 current_route = route;

38 current_cost = ExtraTools . GetCost (ref current_route , ref env);

39 counter_route ++;

40 }

41 else

42 {

43 //If the ant gets stuck , the route is not feasible .

44

45 //In this place we can put the different local interactions

which only works

46 // with the last node of this bad route.

47 // ----- LOCAL INTERACTION FUNCTION SPACE ------

48 route = new List <int >();

49 }

50

51 return route;

52 }

Information Technology Engineer 100 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Compute Coefficient

1 // ---

2 public Double ComputeCoefficient (Double pheromone , Double distance ,

Double proximity)

3 {

4 Double coefficient = 0;

5 if (pheromone == tau_0 || counter_route < 3)

6 {

7 coefficient = Math.Pow(proximity , alpha) * Math.Pow (1 /

distance , beta);

8 }

9 else

10 {

11 coefficient = Math.Pow(pheromone , alpha) * Math.Pow(proximity ,

beta);

12 }

13

14 return coefficient ;

15 }

Appendix 2. Graphical Animation with Static and Dy-
namic Obstacles

Figure 1: Random Walk Phase. Environment with Obstacles

Information Technology Engineer 101 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 2: Route 1. Environment with Obstacles

Figure 3: Obstacle Addition and Killed Ants. Environment with Obstacles

Information Technology Engineer 102 Final Grade Project

School of Mathematical and Computational Sciences YACHAY TECH

Figure 4: Rerouting Phase or Route 2. Environment with Obstacles

(a) Menu Configuration 1
(b) Menu Configuration 2

Figure 5: Menu

Information Technology Engineer 103 Final Grade Project

	Dedication
	Acknowledgments
	Resumen
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Natural Behavior of ACO
	Problem statement
	Objectives
	General Objective
	Specific Objectives

	Theoretical framework
	Path Planning
	Environment Representation

	Path Planning and Ant Colony Optimization
	Initial Parameters
	Finding Paths Methods
	Movement Choice
	Pheromone Reinforcement
	Pheromone Evaporation
	Algorithm Ending

	State of the Art
	Exact or Complete Algorithms
	Dijkstra Algorithm
	A* Search Algorithm

	Comprehensive Search Algorithms
	Breadth-First Search
	Depth-First Search

	Metaheuristics Algorithms
	Genetic Algorithm

	Artificial Intelligence Algorithms
	Reinforcement Learning - LRTA*

	Methodology
	Phases of Problem Solving
	Description of the Problem
	Analysis of the Problem
	Algorithm Design
	Implementation
	Testing

	Model Proposal
	General Mesh Environment
	Basic ACO algorithm - ACOv0
	Global Interactions - Random Walks
	Local Interactions
	Graphic Simulation

	Experimental Setup
	Data Generation Method
	Analysis Method

	Results and Discussion
	Performance Evaluation of ACOv0
	Evaluation of Global Interactions Performance
	Evaluation of Local Interactions Performance
	Evaluation of Several Methods
	Qualitative Evaluation of Graphic Simulation
	General Results

	Conclusions
	Conclusion
	Recommendations
	Future Work

	Bibliography
	Appendices

